Normalized defining polynomial
\( x^{20} - 5 x^{19} + 10 x^{18} - 15 x^{17} + 35 x^{16} - 86 x^{15} + 152 x^{14} - 197 x^{13} + 259 x^{12} - 400 x^{11} + 502 x^{10} - 481 x^{9} + 439 x^{8} - 370 x^{7} + 253 x^{6} - 151 x^{5} + 82 x^{4} - 39 x^{3} + 16 x^{2} - 5 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(75570724234611059753853009=3^{10}\cdot 61^{6}\cdot 397^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{47} a^{18} - \frac{6}{47} a^{17} - \frac{8}{47} a^{16} - \frac{4}{47} a^{15} - \frac{4}{47} a^{14} + \frac{14}{47} a^{13} - \frac{1}{47} a^{12} - \frac{15}{47} a^{11} + \frac{16}{47} a^{10} - \frac{9}{47} a^{9} - \frac{14}{47} a^{8} - \frac{16}{47} a^{7} - \frac{8}{47} a^{6} + \frac{22}{47} a^{5} - \frac{21}{47} a^{3} + \frac{9}{47} a^{2} - \frac{14}{47} a + \frac{2}{47}$, $\frac{1}{63595769513} a^{19} - \frac{567950219}{63595769513} a^{18} - \frac{344447991}{63595769513} a^{17} - \frac{8385511928}{63595769513} a^{16} - \frac{19785896945}{63595769513} a^{15} - \frac{27756236357}{63595769513} a^{14} - \frac{21188582310}{63595769513} a^{13} - \frac{9768483959}{63595769513} a^{12} + \frac{18416959711}{63595769513} a^{11} - \frac{30735080903}{63595769513} a^{10} + \frac{23586285818}{63595769513} a^{9} - \frac{3539204347}{63595769513} a^{8} + \frac{5622020394}{63595769513} a^{7} + \frac{21752403754}{63595769513} a^{6} + \frac{25247734345}{63595769513} a^{5} - \frac{21152846529}{63595769513} a^{4} + \frac{31027840915}{63595769513} a^{3} - \frac{18779328604}{63595769513} a^{2} + \frac{17543833549}{63595769513} a - \frac{25920760576}{63595769513}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{84792575767}{63595769513} a^{19} + \frac{386595207224}{63595769513} a^{18} - \frac{691874906188}{63595769513} a^{17} + \frac{1028983497358}{63595769513} a^{16} - \frac{2613740454217}{63595769513} a^{15} + \frac{6275620794228}{63595769513} a^{14} - \frac{10500618608809}{63595769513} a^{13} + \frac{12999359187047}{63595769513} a^{12} - \frac{17683888526951}{63595769513} a^{11} + \frac{27716295210272}{63595769513} a^{10} - \frac{32481926037842}{63595769513} a^{9} + \frac{30017056078580}{63595769513} a^{8} - \frac{27845611963166}{63595769513} a^{7} + \frac{22075905138974}{63595769513} a^{6} - \frac{14183408959450}{63595769513} a^{5} + \frac{8204566375769}{63595769513} a^{4} - \frac{4103657423832}{63595769513} a^{3} + \frac{1754272903548}{63595769513} a^{2} - \frac{668235019627}{63595769513} a + \frac{193664607176}{63595769513} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 96029.8763499 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7680 |
| The 72 conjugacy class representatives for t20n368 are not computed |
| Character table for t20n368 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 5.5.24217.1, 10.0.142510530627.1, 10.8.8693142368247.1, 10.2.35774248429.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||