Normalized defining polynomial
\( x^{20} - 4 x^{19} + 315 x^{18} - 1114 x^{17} + 45460 x^{16} - 141244 x^{15} + 3956104 x^{14} - 10685780 x^{13} + 229810454 x^{12} - 531124316 x^{11} + 9309194200 x^{10} - 17976765812 x^{9} + 266292849854 x^{8} - 414258891012 x^{7} + 5311831568589 x^{6} - 6267755680692 x^{5} + 70722381249776 x^{4} - 56512538407374 x^{3} + 567642204410037 x^{2} - 231449391531422 x + 2086214435804201 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(75263294618341622670336367123708064000000000000000=2^{20}\cdot 5^{15}\cdot 11^{16}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $311.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2860=2^{2}\cdot 5\cdot 11\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2860}(1,·)$, $\chi_{2860}(707,·)$, $\chi_{2860}(389,·)$, $\chi_{2860}(521,·)$, $\chi_{2860}(203,·)$, $\chi_{2860}(463,·)$, $\chi_{2860}(1169,·)$, $\chi_{2860}(1747,·)$, $\chi_{2860}(1301,·)$, $\chi_{2860}(2787,·)$, $\chi_{2860}(983,·)$, $\chi_{2860}(2267,·)$, $\chi_{2860}(2341,·)$, $\chi_{2860}(2209,·)$, $\chi_{2860}(1763,·)$, $\chi_{2860}(2469,·)$, $\chi_{2860}(2729,·)$, $\chi_{2860}(2803,·)$, $\chi_{2860}(2007,·)$, $\chi_{2860}(2601,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{4} a^{15} + \frac{1}{4} a^{14} - \frac{1}{4} a^{12} + \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} + \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{17} - \frac{1}{2} a^{13} + \frac{1}{4} a^{12} + \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{1552766010821371901904645124} a^{18} - \frac{62501324641959326722270625}{776383005410685950952322562} a^{17} + \frac{19953898199763882581054825}{776383005410685950952322562} a^{16} - \frac{18518982563841568692914745}{1552766010821371901904645124} a^{15} + \frac{598877657783425416942383487}{1552766010821371901904645124} a^{14} + \frac{698003395256681192393763027}{1552766010821371901904645124} a^{13} - \frac{177948343054614680598243008}{388191502705342975476161281} a^{12} - \frac{185578522148089790115932483}{388191502705342975476161281} a^{11} - \frac{369631454620153901604848245}{1552766010821371901904645124} a^{10} + \frac{83609488523527425684670643}{1552766010821371901904645124} a^{9} + \frac{2030345429547722064509787}{388191502705342975476161281} a^{8} + \frac{160453415889934610296948965}{1552766010821371901904645124} a^{7} + \frac{151477408966377546340164309}{1552766010821371901904645124} a^{6} + \frac{712409745128444790310397465}{1552766010821371901904645124} a^{5} - \frac{83377711680458802206048598}{388191502705342975476161281} a^{4} + \frac{200985114518724480190492717}{1552766010821371901904645124} a^{3} + \frac{378993081909977627255867405}{1552766010821371901904645124} a^{2} - \frac{159270399714616029510560640}{388191502705342975476161281} a + \frac{422580395904002737960394177}{1552766010821371901904645124}$, $\frac{1}{4922861560801078917646335052561406164651894954302803284625299396194484} a^{19} - \frac{1202313815652552740353890758997344967548263}{4922861560801078917646335052561406164651894954302803284625299396194484} a^{18} + \frac{306972032294509594957791734602405077215827907374533965217404382208529}{2461430780400539458823167526280703082325947477151401642312649698097242} a^{17} - \frac{579537653455192960746791609058506190595833790674648508172380699074161}{4922861560801078917646335052561406164651894954302803284625299396194484} a^{16} - \frac{111402415641329683839362777672832700155110908952332352298790114333189}{1230715390200269729411583763140351541162973738575700821156324849048621} a^{15} - \frac{1045260302293971464801353739775750732298084876911273033477062722732299}{2461430780400539458823167526280703082325947477151401642312649698097242} a^{14} + \frac{1423533342317190528746755391602035364097509970403691259535834580328275}{4922861560801078917646335052561406164651894954302803284625299396194484} a^{13} + \frac{240068812873528429687322866013083559839670680575366578795993343133381}{2461430780400539458823167526280703082325947477151401642312649698097242} a^{12} - \frac{1443946114546923251215603695571305633608049343585267901134047353481971}{4922861560801078917646335052561406164651894954302803284625299396194484} a^{11} - \frac{1041105370197316624791099520043264605138804450981013148203816574184043}{2461430780400539458823167526280703082325947477151401642312649698097242} a^{10} + \frac{1144848442718624522736369477905610674847516431123520003185638056867525}{4922861560801078917646335052561406164651894954302803284625299396194484} a^{9} + \frac{2427495395822737706517118599950160651371061843645048151873245247771987}{4922861560801078917646335052561406164651894954302803284625299396194484} a^{8} + \frac{426747318028166776859866898932885026507524740207099114523361359950675}{1230715390200269729411583763140351541162973738575700821156324849048621} a^{7} + \frac{447368413983576418876086747972798832979080069115548453704916283126180}{1230715390200269729411583763140351541162973738575700821156324849048621} a^{6} + \frac{936047244853023506206176633544937912289168285423130380521215670464087}{4922861560801078917646335052561406164651894954302803284625299396194484} a^{5} - \frac{1735316473431945514618939603051726967892292406003710150099191096667793}{4922861560801078917646335052561406164651894954302803284625299396194484} a^{4} + \frac{18419344690630600290451494295160925569858026263003148867684328156091}{2461430780400539458823167526280703082325947477151401642312649698097242} a^{3} - \frac{2015371232162978814240358072592457712905529520956988622647372589554683}{4922861560801078917646335052561406164651894954302803284625299396194484} a^{2} - \frac{469925723154523752119397841836186494651774617363869455499348988909995}{4922861560801078917646335052561406164651894954302803284625299396194484} a + \frac{1258170949191530836344290983339073077407863110572479245085355155696691}{4922861560801078917646335052561406164651894954302803284625299396194484}$
Class group and class number
$C_{2}\times C_{4}\times C_{69842884}$, which has order $558743072$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40471423.40714512 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{65}) \), 4.0.4394000.2, \(\Q(\zeta_{11})^+\), 10.10.248718600009790625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | R | $20$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | $20$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||
| 13 | Data not computed | ||||||