Normalized defining polynomial
\( x^{20} - 4 x^{19} + 315 x^{18} - 1114 x^{17} + 41560 x^{16} - 128764 x^{15} + 2923384 x^{14} - 7815380 x^{13} + 115326734 x^{12} - 259868396 x^{11} + 2472180640 x^{10} - 4536732452 x^{9} + 27675900374 x^{8} - 40062680052 x^{7} + 224203197309 x^{6} - 262142242452 x^{5} + 1203330073916 x^{4} - 997073174094 x^{3} + 4136129114757 x^{2} - 1917948259382 x + 7031931591101 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(75263294618341622670336367123708064000000000000000=2^{20}\cdot 5^{15}\cdot 11^{16}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $311.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2860=2^{2}\cdot 5\cdot 11\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2860}(1,·)$, $\chi_{2860}(1347,·)$, $\chi_{2860}(389,·)$, $\chi_{2860}(1607,·)$, $\chi_{2860}(521,·)$, $\chi_{2860}(2127,·)$, $\chi_{2860}(2729,·)$, $\chi_{2860}(1169,·)$, $\chi_{2860}(1301,·)$, $\chi_{2860}(603,·)$, $\chi_{2860}(863,·)$, $\chi_{2860}(2209,·)$, $\chi_{2860}(1123,·)$, $\chi_{2860}(2469,·)$, $\chi_{2860}(2601,·)$, $\chi_{2860}(1643,·)$, $\chi_{2860}(47,·)$, $\chi_{2860}(2423,·)$, $\chi_{2860}(2341,·)$, $\chi_{2860}(1087,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{7} a^{10} - \frac{2}{7} a^{9} - \frac{2}{7} a^{8} - \frac{1}{7} a^{7} + \frac{2}{7} a^{5} + \frac{1}{7} a^{4} + \frac{3}{7} a^{3} + \frac{2}{7} a^{2} + \frac{2}{7} a - \frac{2}{7}$, $\frac{1}{7} a^{11} + \frac{1}{7} a^{9} + \frac{2}{7} a^{8} - \frac{2}{7} a^{7} + \frac{2}{7} a^{6} - \frac{2}{7} a^{5} - \frac{2}{7} a^{4} + \frac{1}{7} a^{3} - \frac{1}{7} a^{2} + \frac{2}{7} a + \frac{3}{7}$, $\frac{1}{7} a^{12} - \frac{3}{7} a^{9} + \frac{3}{7} a^{7} - \frac{2}{7} a^{6} + \frac{3}{7} a^{5} + \frac{3}{7} a^{3} + \frac{1}{7} a + \frac{2}{7}$, $\frac{1}{7} a^{13} + \frac{1}{7} a^{9} - \frac{3}{7} a^{8} + \frac{2}{7} a^{7} + \frac{3}{7} a^{6} - \frac{1}{7} a^{5} - \frac{1}{7} a^{4} + \frac{2}{7} a^{3} + \frac{1}{7} a + \frac{1}{7}$, $\frac{1}{7} a^{14} - \frac{1}{7} a^{9} - \frac{3}{7} a^{8} - \frac{3}{7} a^{7} - \frac{1}{7} a^{6} - \frac{3}{7} a^{5} + \frac{1}{7} a^{4} - \frac{3}{7} a^{3} - \frac{1}{7} a^{2} - \frac{1}{7} a + \frac{2}{7}$, $\frac{1}{14} a^{15} - \frac{1}{14} a^{14} - \frac{1}{14} a^{12} - \frac{1}{14} a^{11} - \frac{1}{14} a^{10} - \frac{1}{2} a^{9} + \frac{5}{14} a^{8} - \frac{3}{7} a^{7} + \frac{5}{14} a^{6} - \frac{2}{7} a^{5} - \frac{1}{7} a^{4} - \frac{1}{7} a^{3} + \frac{1}{14} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{14} a^{16} - \frac{1}{14} a^{14} - \frac{1}{14} a^{13} + \frac{3}{7} a^{9} + \frac{1}{14} a^{8} - \frac{1}{2} a^{7} + \frac{1}{14} a^{6} - \frac{1}{7} a^{5} + \frac{3}{14} a^{3} - \frac{3}{7} a^{2} - \frac{3}{7} a + \frac{1}{14}$, $\frac{1}{14} a^{17} - \frac{1}{14} a^{12} - \frac{1}{14} a^{11} - \frac{1}{14} a^{10} + \frac{2}{7} a^{9} + \frac{2}{7} a^{8} - \frac{5}{14} a^{7} + \frac{1}{14} a^{6} + \frac{3}{7} a^{5} - \frac{3}{14} a^{4} - \frac{2}{7} a^{3} - \frac{5}{14} a^{2} - \frac{3}{7} a - \frac{5}{14}$, $\frac{1}{7761624078151162505184000199023141614} a^{18} + \frac{13945965523677733900555334780145521}{3880812039075581252592000099511570807} a^{17} - \frac{62022761124205249250531187508034617}{3880812039075581252592000099511570807} a^{16} - \frac{4762120118582176817178034385669827}{7761624078151162505184000199023141614} a^{15} - \frac{501618895929729351963443650892586831}{7761624078151162505184000199023141614} a^{14} - \frac{341666376686485758644660307276369595}{7761624078151162505184000199023141614} a^{13} - \frac{164052621738676325473997773575602487}{3880812039075581252592000099511570807} a^{12} + \frac{207705559604679594791270401521006426}{3880812039075581252592000099511570807} a^{11} + \frac{119994535638968590084416898895386407}{7761624078151162505184000199023141614} a^{10} + \frac{987827204881206610824065172326446113}{7761624078151162505184000199023141614} a^{9} + \frac{1098826297290816204466053656146160964}{3880812039075581252592000099511570807} a^{8} - \frac{356850497897939438988435727671724957}{7761624078151162505184000199023141614} a^{7} + \frac{3752552664458886318584582074366500295}{7761624078151162505184000199023141614} a^{6} + \frac{267322975351844924664668639425752277}{1108803439735880357883428599860448802} a^{5} + \frac{493826993831011264876058338559653253}{3880812039075581252592000099511570807} a^{4} + \frac{197928797770772625415689158969111663}{1108803439735880357883428599860448802} a^{3} + \frac{2236718095811282068076298489217193225}{7761624078151162505184000199023141614} a^{2} - \frac{416503288501680901097975058112176681}{3880812039075581252592000099511570807} a + \frac{8135025775598248470013615366570429}{19550690373176731751093199493761062}$, $\frac{1}{120935098518459306869210558556337130720538550675993582089316102923037037654} a^{19} + \frac{5314270289097584234801108605242402223}{120935098518459306869210558556337130720538550675993582089316102923037037654} a^{18} + \frac{2370873063204418902028120388118159742272214930050027164981516998748245729}{120935098518459306869210558556337130720538550675993582089316102923037037654} a^{17} - \frac{1353681644424691756338596792727740870766720172956971586766416439379331620}{60467549259229653434605279278168565360269275337996791044658051461518518827} a^{16} + \frac{1041220008162079868888535723514463913054126557508396707682163910531720249}{120935098518459306869210558556337130720538550675993582089316102923037037654} a^{15} + \frac{2630532753060739456980941931932906634277505445194778311962637234464129504}{60467549259229653434605279278168565360269275337996791044658051461518518827} a^{14} - \frac{1393183735138404491872341407149955552873566923523923141054375554921201408}{60467549259229653434605279278168565360269275337996791044658051461518518827} a^{13} + \frac{2005835847093621052769327206906590042196297893547945670871839579785686618}{60467549259229653434605279278168565360269275337996791044658051461518518827} a^{12} - \frac{2143585954762358598841492203116349072392118211069232444210787646897121441}{120935098518459306869210558556337130720538550675993582089316102923037037654} a^{11} - \frac{522267414041573841206636831720463257874544885780815063494859362770171332}{8638221322747093347800754182595509337181325048285255863522578780216931261} a^{10} - \frac{29315549867122043300353379760986259334412404921227319843686293646325979531}{60467549259229653434605279278168565360269275337996791044658051461518518827} a^{9} + \frac{10441136719326864682859238047263078606762869273847642676889147222897948167}{120935098518459306869210558556337130720538550675993582089316102923037037654} a^{8} - \frac{6450640784607988310651633867085170830028413985221944286671596832551922648}{60467549259229653434605279278168565360269275337996791044658051461518518827} a^{7} - \frac{511990982945753095746299640072196675244032706490617946949447561998252299}{120935098518459306869210558556337130720538550675993582089316102923037037654} a^{6} - \frac{28354170834454459047451266378950740090580174841502027878843415309822573499}{120935098518459306869210558556337130720538550675993582089316102923037037654} a^{5} + \frac{1757909053398580348696328389088112541528791603628411186149958952178772013}{8638221322747093347800754182595509337181325048285255863522578780216931261} a^{4} + \frac{3846110877952009187332775013393201424583593571210104690963192525006950777}{120935098518459306869210558556337130720538550675993582089316102923037037654} a^{3} + \frac{3597846338488005008990133515564072566163302148932102075938996641601470839}{120935098518459306869210558556337130720538550675993582089316102923037037654} a^{2} - \frac{14418522030891949782338021442965830361106213817184412154005349082795810809}{60467549259229653434605279278168565360269275337996791044658051461518518827} a - \frac{31728125451131081893344331474807952449096611934672295899546294305460475}{152311207202089807140063675763648779245010769113342042933647484789719191}$
Class group and class number
$C_{2}\times C_{2}\times C_{185518324}$, which has order $742073296$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40471423.40714512 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{65}) \), 4.0.4394000.1, \(\Q(\zeta_{11})^+\), 10.10.248718600009790625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | R | $20$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | $20$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||
| 13 | Data not computed | ||||||