Normalized defining polynomial
\( x^{20} + 38 x^{18} + 1617 x^{16} + 56078 x^{14} + 1557872 x^{12} + 32388528 x^{10} + 499279507 x^{8} + 5619072258 x^{6} + 44215198547 x^{4} + 222248107898 x^{2} + 541461977281 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7506031090115774979391989500178595840000000000=2^{40}\cdot 5^{10}\cdot 31^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $196.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1240=2^{3}\cdot 5\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1240}(1,·)$, $\chi_{1240}(709,·)$, $\chi_{1240}(711,·)$, $\chi_{1240}(841,·)$, $\chi_{1240}(779,·)$, $\chi_{1240}(271,·)$, $\chi_{1240}(721,·)$, $\chi_{1240}(659,·)$, $\chi_{1240}(1179,·)$, $\chi_{1240}(151,·)$, $\chi_{1240}(281,·)$, $\chi_{1240}(219,·)$, $\chi_{1240}(29,·)$, $\chi_{1240}(991,·)$, $\chi_{1240}(481,·)$, $\chi_{1240}(419,·)$, $\chi_{1240}(1069,·)$, $\chi_{1240}(309,·)$, $\chi_{1240}(829,·)$, $\chi_{1240}(511,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} - \frac{2}{5} a^{4} + \frac{1}{5}$, $\frac{1}{5} a^{9} - \frac{2}{5} a^{5} + \frac{1}{5} a$, $\frac{1}{10} a^{10} - \frac{1}{10} a^{8} - \frac{1}{5} a^{6} - \frac{3}{10} a^{4} + \frac{1}{10} a^{2} - \frac{1}{10}$, $\frac{1}{10} a^{11} - \frac{1}{10} a^{9} - \frac{1}{5} a^{7} - \frac{3}{10} a^{5} + \frac{1}{10} a^{3} - \frac{1}{10} a$, $\frac{1}{50} a^{12} - \frac{3}{50} a^{8} - \frac{3}{10} a^{6} - \frac{11}{25} a^{4} - \frac{1}{5} a^{2} - \frac{1}{50}$, $\frac{1}{50} a^{13} - \frac{3}{50} a^{9} - \frac{3}{10} a^{7} - \frac{11}{25} a^{5} - \frac{1}{5} a^{3} - \frac{1}{50} a$, $\frac{1}{50} a^{14} + \frac{1}{25} a^{10} + \frac{9}{25} a^{6} - \frac{3}{10} a^{4} + \frac{2}{25} a^{2} + \frac{3}{10}$, $\frac{1}{100} a^{15} - \frac{1}{100} a^{14} - \frac{1}{100} a^{13} - \frac{3}{100} a^{11} - \frac{1}{50} a^{10} - \frac{1}{50} a^{9} + \frac{43}{100} a^{7} - \frac{9}{50} a^{6} + \frac{21}{50} a^{5} - \frac{7}{20} a^{4} - \frac{41}{100} a^{3} - \frac{1}{25} a^{2} + \frac{11}{100} a + \frac{7}{20}$, $\frac{1}{30500} a^{16} - \frac{19}{3050} a^{14} - \frac{1}{100} a^{13} + \frac{111}{30500} a^{12} - \frac{1}{20} a^{11} + \frac{39}{3050} a^{10} - \frac{1}{50} a^{9} - \frac{2589}{30500} a^{8} + \frac{1}{4} a^{7} - \frac{281}{3050} a^{6} + \frac{7}{100} a^{5} + \frac{333}{15250} a^{4} - \frac{9}{20} a^{3} - \frac{3}{6100} a^{2} + \frac{23}{50} a - \frac{4589}{30500}$, $\frac{1}{30500} a^{17} + \frac{23}{6100} a^{15} - \frac{97}{15250} a^{13} - \frac{1}{100} a^{12} - \frac{21}{1220} a^{11} + \frac{2901}{30500} a^{9} - \frac{7}{100} a^{8} + \frac{2061}{6100} a^{7} - \frac{7}{20} a^{6} + \frac{319}{7625} a^{5} + \frac{21}{50} a^{4} - \frac{626}{1525} a^{3} + \frac{1}{10} a^{2} + \frac{2433}{15250} a + \frac{41}{100}$, $\frac{1}{675226376262202766021258147946114500} a^{18} - \frac{472852063745233616870639285286}{168806594065550691505314536986528625} a^{16} + \frac{2175627596337765367279941848025563}{337613188131101383010629073973057250} a^{14} + \frac{23181463547629675840844994298713}{5534642428378711196895558589722250} a^{12} - \frac{1}{20} a^{11} - \frac{15247303771170333494656897379271589}{675226376262202766021258147946114500} a^{10} + \frac{1}{20} a^{9} - \frac{16668657687334478283674669316693981}{168806594065550691505314536986528625} a^{8} - \frac{2}{5} a^{7} - \frac{112754878877566754013059212202432227}{337613188131101383010629073973057250} a^{6} - \frac{7}{20} a^{5} + \frac{44506531015207571714098096131105779}{168806594065550691505314536986528625} a^{4} + \frac{9}{20} a^{3} - \frac{194129902276268642507383702763297109}{675226376262202766021258147946114500} a^{2} + \frac{1}{20} a + \frac{226180227427790821395735038316970941}{675226376262202766021258147946114500}$, $\frac{1}{496859251935155545551848616842816839794500} a^{19} - \frac{1945340150704517907264105997907076463}{496859251935155545551848616842816839794500} a^{17} - \frac{1159519287953189618481355961783025518399}{496859251935155545551848616842816839794500} a^{15} + \frac{733167782664651747509492522375657979878}{124214812983788886387962154210704209948625} a^{13} + \frac{73150995705577016834289202613421878603}{248429625967577772775924308421408419897250} a^{11} - \frac{1}{20} a^{10} + \frac{29917061059504246192318376676941430404937}{496859251935155545551848616842816839794500} a^{9} + \frac{1}{20} a^{8} + \frac{311317350228226093974136063824883848771}{8145233638281238451669649456439620324500} a^{7} - \frac{2}{5} a^{6} + \frac{57494115852673123954919922092581464337923}{124214812983788886387962154210704209948625} a^{5} - \frac{7}{20} a^{4} - \frac{227041386374409935797868237973101439636989}{496859251935155545551848616842816839794500} a^{3} + \frac{9}{20} a^{2} - \frac{58443010883026459384722894838014869413853}{496859251935155545551848616842816839794500} a + \frac{1}{20}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{24644}$, which has order $12617728$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 190570522.65858147 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-310}) \), \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{31}) \), \(\Q(\sqrt{-10}, \sqrt{31})\), 5.5.923521.1, 10.0.2707417309252710400000.1, 10.0.87336042233958400000.1, 10.10.27074173092527104.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31 | Data not computed | ||||||