Normalized defining polynomial
\( x^{20} - 5 x^{19} + 5 x^{18} + 30 x^{17} - 460 x^{16} + 1594 x^{15} - 660 x^{14} - 6250 x^{13} + 56490 x^{12} - 105110 x^{11} + 59367 x^{10} + 111430 x^{9} - 1315060 x^{8} + 1129650 x^{7} + 448205 x^{6} + 7848131 x^{5} + 15953485 x^{4} - 43775185 x^{3} - 32489355 x^{2} + 70381245 x + 55238851 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(75045768722673667967319488525390625=3^{10}\cdot 5^{26}\cdot 31^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} - \frac{1}{7} a^{11} + \frac{3}{7} a^{10} - \frac{3}{7} a^{9} + \frac{2}{7} a^{8} + \frac{1}{7} a^{6} - \frac{3}{7} a^{5} - \frac{1}{7} a^{4} + \frac{2}{7} a^{3} - \frac{1}{7} a^{2} + \frac{3}{7} a + \frac{2}{7}$, $\frac{1}{7} a^{13} + \frac{2}{7} a^{11} - \frac{1}{7} a^{9} + \frac{2}{7} a^{8} + \frac{1}{7} a^{7} - \frac{2}{7} a^{6} + \frac{3}{7} a^{5} + \frac{1}{7} a^{4} + \frac{1}{7} a^{3} + \frac{2}{7} a^{2} - \frac{2}{7} a + \frac{2}{7}$, $\frac{1}{21} a^{14} + \frac{1}{21} a^{13} - \frac{10}{21} a^{11} - \frac{1}{3} a^{10} - \frac{8}{21} a^{8} - \frac{8}{21} a^{7} - \frac{8}{21} a^{6} + \frac{1}{7} a^{5} - \frac{10}{21} a^{4} - \frac{1}{21} a^{3} + \frac{3}{7} a^{2} + \frac{1}{21} a - \frac{2}{21}$, $\frac{1}{21} a^{15} - \frac{1}{21} a^{13} - \frac{1}{21} a^{12} - \frac{2}{7} a^{11} - \frac{8}{21} a^{10} + \frac{1}{3} a^{9} - \frac{1}{7} a^{8} - \frac{1}{21} a^{6} + \frac{2}{21} a^{5} + \frac{1}{3} a^{3} + \frac{4}{21} a^{2} + \frac{1}{7} a - \frac{1}{21}$, $\frac{1}{147} a^{16} - \frac{2}{147} a^{15} - \frac{2}{147} a^{14} - \frac{1}{49} a^{13} - \frac{1}{21} a^{12} - \frac{31}{147} a^{11} - \frac{2}{7} a^{10} - \frac{5}{147} a^{9} + \frac{23}{147} a^{8} + \frac{67}{147} a^{7} - \frac{2}{49} a^{6} + \frac{5}{21} a^{5} + \frac{38}{147} a^{4} - \frac{13}{49} a^{3} + \frac{25}{147} a^{2} - \frac{53}{147} a + \frac{55}{147}$, $\frac{1}{147} a^{17} + \frac{1}{147} a^{15} + \frac{8}{147} a^{13} - \frac{10}{147} a^{12} - \frac{23}{49} a^{11} - \frac{68}{147} a^{10} + \frac{62}{147} a^{9} + \frac{5}{49} a^{8} - \frac{18}{49} a^{7} - \frac{40}{147} a^{6} - \frac{67}{147} a^{5} - \frac{18}{49} a^{4} - \frac{53}{147} a^{3} - \frac{59}{147} a^{2} + \frac{61}{147} a + \frac{68}{147}$, $\frac{1}{20839804409151} a^{18} + \frac{659383222}{330790546177} a^{17} + \frac{21749369104}{6946601469717} a^{16} + \frac{86574279254}{6946601469717} a^{15} + \frac{443739573470}{20839804409151} a^{14} - \frac{1296244423021}{20839804409151} a^{13} - \frac{86631466504}{6946601469717} a^{12} + \frac{4611258228013}{20839804409151} a^{11} + \frac{9259984482440}{20839804409151} a^{10} - \frac{1298839885738}{6946601469717} a^{9} - \frac{410893484644}{1603061877627} a^{8} + \frac{1518083742374}{20839804409151} a^{7} - \frac{2251411091155}{20839804409151} a^{6} - \frac{638130180918}{2315533823239} a^{5} - \frac{10361577959318}{20839804409151} a^{4} - \frac{70688592965}{20839804409151} a^{3} - \frac{6780412654415}{20839804409151} a^{2} - \frac{6979638660403}{20839804409151} a + \frac{3840975562373}{20839804409151}$, $\frac{1}{17009327048138634680972647740960741561256910242956036697941} a^{19} - \frac{55113540861954724705201368028366891532356229}{5669775682712878226990882580320247187085636747652012232647} a^{18} - \frac{5029263264222853136126451781157550238005102289807118174}{1889925227570959408996960860106749062361878915884004077549} a^{17} + \frac{136297184736858670624286318496008162484112570723373110}{436136590977913709768529429255403629775818211357847094819} a^{16} + \frac{17143959947177468451298164768815456258163934754637030320}{1308409772933741129305588287766210889327454634073541284457} a^{15} + \frac{30244242340529892867011030306033958799232565625989047}{186915681847677304186512612538030127046779233439077326351} a^{14} + \frac{2991356529620288965873939771009623391903256870323416766}{809967954673268318141554654331463883869376678236001747521} a^{13} - \frac{56903728504900910347245021943984076783063620019866525322}{2429903864019804954424663962994391651608130034708005242563} a^{12} + \frac{4403117128929724618278189149385608984072797714509192151565}{17009327048138634680972647740960741561256910242956036697941} a^{11} + \frac{1866961192530448933581396218018015429712724471410304761661}{5669775682712878226990882580320247187085636747652012232647} a^{10} + \frac{1129058511942944219158910790549859670882630277305242782419}{17009327048138634680972647740960741561256910242956036697941} a^{9} - \frac{5973352313818365177466200477085850296249242819932258998540}{17009327048138634680972647740960741561256910242956036697941} a^{8} + \frac{3056894745951779203565750648988777374825520176861404933700}{17009327048138634680972647740960741561256910242956036697941} a^{7} - \frac{1340516440401984617573265922010229095229027822499501087567}{5669775682712878226990882580320247187085636747652012232647} a^{6} + \frac{8221793999396169045175001061920212882476211083018295685074}{17009327048138634680972647740960741561256910242956036697941} a^{5} - \frac{29367310292511562304410061886226507328391118839893905184}{17009327048138634680972647740960741561256910242956036697941} a^{4} + \frac{7007887163685178342152307915014435653174438295172921772614}{17009327048138634680972647740960741561256910242956036697941} a^{3} - \frac{11968888367067473768075814643246026819506380266975666728}{34223998084785985273586816380202699318424366686028242853} a^{2} + \frac{1170789670860907464059884538278638774467763721752919406519}{2429903864019804954424663962994391651608130034708005242563} a + \frac{911076723941822476289726462356953037348489473500490316933}{5669775682712878226990882580320247187085636747652012232647}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{365258343734433380611056131441581655}{4999774636833680677039311606729464615097537} a^{19} + \frac{712047643339558004792473396119850055}{1666591545611226892346437202243154871699179} a^{18} - \frac{1281413633132608486730366014714905650}{1666591545611226892346437202243154871699179} a^{17} - \frac{747608263025333709156270329790663580}{555530515203742297448812400747718290566393} a^{16} + \frac{172663743815190190959380176923691697339}{4999774636833680677039311606729464615097537} a^{15} - \frac{733354908380152741141780866342400845055}{4999774636833680677039311606729464615097537} a^{14} + \frac{317276678333288966421967994530033606315}{1666591545611226892346437202243154871699179} a^{13} + \frac{1170828767021066171847377146098030854845}{4999774636833680677039311606729464615097537} a^{12} - \frac{3059754271162097181383794185052988749645}{714253519547668668148473086675637802156791} a^{11} + \frac{2724649732245482602759545520741593801617}{238084506515889556049491028891879267385597} a^{10} - \frac{80244458150637625684414718665717375701820}{4999774636833680677039311606729464615097537} a^{9} + \frac{45771859249144718127136517934808034813150}{4999774636833680677039311606729464615097537} a^{8} + \frac{414057368913300936049660361090776971598160}{4999774636833680677039311606729464615097537} a^{7} - \frac{246447008195094229290939606555893587171645}{1666591545611226892346437202243154871699179} a^{6} + \frac{596946143769814560407387216064008044873078}{4999774636833680677039311606729464615097537} a^{5} - \frac{3415373291894769166531207041353498704940165}{4999774636833680677039311606729464615097537} a^{4} - \frac{60272381008873502409405439885707513777665}{102036217078238381164067583810805400308113} a^{3} + \frac{229863512768314187258456296640082846929110}{70419361082164516578018473334217811480247} a^{2} - \frac{4447289813486818492641475773988419773328055}{4999774636833680677039311606729464615097537} a - \frac{1704574943378131688421234162515889451527461}{555530515203742297448812400747718290566393} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1625055692.34 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 100 |
| The 16 conjugacy class representatives for $D_5^2$ |
| Character table for $D_5^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-3}, \sqrt{5})\), 10.0.54788965576171875.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
| Degree 25 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5 | Data not computed | ||||||
| $31$ | 31.5.4.2 | $x^{5} + 217$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 31.5.0.1 | $x^{5} - x + 10$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 31.5.0.1 | $x^{5} - x + 10$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 31.5.4.2 | $x^{5} + 217$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |