Normalized defining polynomial
\( x^{20} - 2 x^{19} - 16 x^{18} + 63 x^{17} + 66 x^{16} - 591 x^{15} + 341 x^{14} + 1985 x^{13} - 5499 x^{12} - 2279 x^{11} + 18053 x^{10} - 21969 x^{9} + 18198 x^{8} + 143040 x^{7} + 68633 x^{6} + 205064 x^{5} + 552136 x^{4} + 56889 x^{3} + 560763 x^{2} + 160304 x + 137729 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7491365733177814925531216830515137=11^{9}\cdot 43^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{13} a^{17} + \frac{6}{13} a^{15} + \frac{5}{13} a^{14} - \frac{4}{13} a^{12} - \frac{4}{13} a^{11} + \frac{4}{13} a^{10} + \frac{5}{13} a^{9} - \frac{3}{13} a^{8} + \frac{2}{13} a^{7} + \frac{5}{13} a^{6} + \frac{2}{13} a^{5} + \frac{1}{13} a^{4} + \frac{1}{13} a^{3} + \frac{3}{13} a^{2} - \frac{3}{13} a + \frac{4}{13}$, $\frac{1}{13} a^{18} + \frac{6}{13} a^{16} + \frac{5}{13} a^{15} - \frac{4}{13} a^{13} - \frac{4}{13} a^{12} + \frac{4}{13} a^{11} + \frac{5}{13} a^{10} - \frac{3}{13} a^{9} + \frac{2}{13} a^{8} + \frac{5}{13} a^{7} + \frac{2}{13} a^{6} + \frac{1}{13} a^{5} + \frac{1}{13} a^{4} + \frac{3}{13} a^{3} - \frac{3}{13} a^{2} + \frac{4}{13} a$, $\frac{1}{25800863139588756049811074730036079353102023438727201291} a^{19} + \frac{175138959462944874148694594497281783093200763789770467}{25800863139588756049811074730036079353102023438727201291} a^{18} - \frac{603524371600796603426178535283772516230271533442209605}{25800863139588756049811074730036079353102023438727201291} a^{17} + \frac{5733291030088879020391895466088670402137626084672484762}{25800863139588756049811074730036079353102023438727201291} a^{16} + \frac{12584063593405485435895388550342294257877249765069397664}{25800863139588756049811074730036079353102023438727201291} a^{15} - \frac{12504498792519519634331836560995904994991622915210444541}{25800863139588756049811074730036079353102023438727201291} a^{14} + \frac{1848677130580930647478370971408436087193672274768175631}{25800863139588756049811074730036079353102023438727201291} a^{13} - \frac{4214215433082435725636518161030492512445298370399153110}{25800863139588756049811074730036079353102023438727201291} a^{12} - \frac{7292461306419304872352104959336309150330162676436402108}{25800863139588756049811074730036079353102023438727201291} a^{11} - \frac{65123363673746227083277288804883227522701088802167484}{25800863139588756049811074730036079353102023438727201291} a^{10} + \frac{9669717686602109511494870248201279508199396215874756361}{25800863139588756049811074730036079353102023438727201291} a^{9} + \frac{6212783246195239004165496781981084148901683025845853710}{25800863139588756049811074730036079353102023438727201291} a^{8} - \frac{505367073090578147436198573603363156607728719749160311}{1984681779968365849985467286925852257930924879902092407} a^{7} - \frac{9791713717488684350675740554714746578702882143267597332}{25800863139588756049811074730036079353102023438727201291} a^{6} + \frac{6202849577878281906144409122715731995852899047251363758}{25800863139588756049811074730036079353102023438727201291} a^{5} - \frac{230786383114756704004728909817068521515975736753012409}{25800863139588756049811074730036079353102023438727201291} a^{4} + \frac{853957165227189028225850035905642303454247446598392842}{1984681779968365849985467286925852257930924879902092407} a^{3} + \frac{2730477682387487446545367322057508096884731628569717195}{25800863139588756049811074730036079353102023438727201291} a^{2} + \frac{6962717736108630011722670398845305170558615755263113322}{25800863139588756049811074730036079353102023438727201291} a - \frac{7110568805764463280012788564866782780925846841876258421}{25800863139588756049811074730036079353102023438727201291}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 641704357.5703068 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5:D_4$ (as 20T53):
| A solvable group of order 200 |
| The 65 conjugacy class representatives for $C_5\times C_5:D_4$ are not computed |
| Character table for $C_5\times C_5:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-43}) \), 4.0.874577.2, 10.0.2152350613963.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $43$ | 43.4.3.1 | $x^{4} + 387$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 43.4.3.1 | $x^{4} + 387$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 43.4.3.1 | $x^{4} + 387$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 43.4.3.1 | $x^{4} + 387$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 43.4.3.1 | $x^{4} + 387$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |