Normalized defining polynomial
\( x^{20} - 2 x^{19} + 7 x^{18} - 2 x^{17} - 37 x^{16} + 28 x^{15} - 245 x^{13} + 266 x^{12} + 395 x^{11} - 660 x^{10} + 1358 x^{9} + 6413 x^{8} + 6698 x^{7} + 4837 x^{6} + 9188 x^{5} + 16636 x^{4} + 20385 x^{3} + 19110 x^{2} + 11925 x + 3555 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(74651918354942620880126953125=3^{10}\cdot 5^{15}\cdot 23^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{60} a^{14} - \frac{1}{4} a^{13} - \frac{1}{15} a^{12} + \frac{1}{10} a^{11} + \frac{1}{20} a^{10} - \frac{1}{10} a^{9} - \frac{7}{30} a^{8} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{29}{60} a^{4} - \frac{1}{4} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{60} a^{15} + \frac{11}{60} a^{13} + \frac{1}{10} a^{12} + \frac{1}{20} a^{11} + \frac{3}{20} a^{10} - \frac{7}{30} a^{9} - \frac{3}{10} a^{7} - \frac{3}{10} a^{6} + \frac{29}{60} a^{5} - \frac{1}{2} a^{4} + \frac{5}{12} a^{3} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{60} a^{16} - \frac{3}{20} a^{13} - \frac{13}{60} a^{12} + \frac{1}{20} a^{11} + \frac{13}{60} a^{10} + \frac{1}{10} a^{9} + \frac{4}{15} a^{8} - \frac{3}{10} a^{7} + \frac{17}{60} a^{6} + \frac{3}{10} a^{5} + \frac{1}{10} a^{4} - \frac{1}{4} a^{3} - \frac{1}{12} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{300} a^{17} - \frac{1}{300} a^{16} + \frac{1}{300} a^{15} + \frac{1}{150} a^{14} + \frac{11}{150} a^{13} + \frac{19}{150} a^{12} + \frac{19}{300} a^{11} - \frac{1}{12} a^{10} - \frac{2}{15} a^{9} + \frac{71}{150} a^{8} - \frac{103}{300} a^{7} + \frac{23}{60} a^{6} - \frac{61}{300} a^{5} - \frac{31}{150} a^{4} - \frac{2}{15} a^{3} + \frac{1}{3} a^{2} + \frac{1}{4} a - \frac{9}{20}$, $\frac{1}{71100} a^{18} + \frac{59}{71100} a^{17} - \frac{101}{17775} a^{16} + \frac{103}{17775} a^{15} + \frac{148}{17775} a^{14} - \frac{2329}{23700} a^{13} + \frac{4517}{35550} a^{12} + \frac{143}{7110} a^{11} + \frac{23}{2844} a^{10} + \frac{1987}{11850} a^{9} + \frac{31247}{71100} a^{8} + \frac{4739}{14220} a^{7} - \frac{4763}{35550} a^{6} + \frac{17659}{35550} a^{5} - \frac{853}{7110} a^{4} + \frac{157}{948} a^{3} + \frac{98}{237} a^{2} - \frac{17}{395} a + \frac{1}{4}$, $\frac{1}{87626264384938612433617800} a^{19} + \frac{43708462532625088807}{87626264384938612433617800} a^{18} - \frac{10882509830514336207631}{8762626438493861243361780} a^{17} + \frac{64997763392059118489143}{14604377397489768738936300} a^{16} - \frac{30132778984187810838043}{5841750958995907495574520} a^{15} - \frac{22590435374302203280057}{87626264384938612433617800} a^{14} - \frac{15541137101569823341220603}{87626264384938612433617800} a^{13} + \frac{1454097565785598718027977}{21906566096234653108404450} a^{12} + \frac{7116770235239899016081}{4868125799163256246312100} a^{11} + \frac{7150823124297556685463217}{87626264384938612433617800} a^{10} + \frac{12054516460865048199590483}{87626264384938612433617800} a^{9} + \frac{2578037061437488136589589}{17525252876987722486723560} a^{8} + \frac{6739720984454885719636949}{43813132192469306216808900} a^{7} + \frac{958487272612708716984941}{2920875479497953747787260} a^{6} - \frac{5762026061976896317656181}{29208754794979537477872600} a^{5} - \frac{43775398718315017586526299}{87626264384938612433617800} a^{4} - \frac{2785968063358010730298067}{5841750958995907495574520} a^{3} - \frac{284956931116276576189598}{730218869874488436946815} a^{2} - \frac{170567789404241515982897}{973625159832651249262420} a + \frac{4538425463808658773561}{24648738223611424031960}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1412098.09505 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.595125.1, 5.1.595125.1 x5, 10.2.1770868828125.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.595125.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $23$ | 23.4.2.2 | $x^{4} - 23 x^{2} + 3703$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 23.4.2.2 | $x^{4} - 23 x^{2} + 3703$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.2 | $x^{4} - 23 x^{2} + 3703$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.2 | $x^{4} - 23 x^{2} + 3703$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.2 | $x^{4} - 23 x^{2} + 3703$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |