Normalized defining polynomial
\( x^{20} + 5 x^{18} - 10 x^{17} + 20 x^{16} - 18 x^{15} - 25 x^{14} + 30 x^{13} + 20 x^{12} + 350 x^{11} - 261 x^{10} - 950 x^{9} + 155 x^{8} + 1010 x^{7} + 730 x^{6} - 172 x^{5} - 980 x^{4} - 880 x^{3} + 160 x^{2} + 640 x + 256 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(738112500000000000000000000=2^{20}\cdot 3^{10}\cdot 5^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{9} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{6} a^{4} + \frac{1}{6} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{12} a^{12} + \frac{1}{6} a^{10} - \frac{1}{12} a^{8} + \frac{1}{6} a^{7} + \frac{1}{6} a^{5} + \frac{1}{4} a^{4} - \frac{1}{6} a^{3} - \frac{1}{6} a^{2} + \frac{1}{3} a$, $\frac{1}{12} a^{13} + \frac{1}{12} a^{9} + \frac{1}{6} a^{8} + \frac{1}{6} a^{7} - \frac{1}{6} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{6} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{36} a^{14} - \frac{1}{36} a^{13} + \frac{1}{36} a^{12} + \frac{1}{18} a^{11} + \frac{1}{12} a^{10} - \frac{1}{36} a^{9} - \frac{1}{36} a^{8} - \frac{1}{9} a^{7} - \frac{1}{4} a^{6} + \frac{17}{36} a^{5} - \frac{7}{36} a^{4} - \frac{1}{9} a^{3} + \frac{2}{9} a^{2} + \frac{1}{9}$, $\frac{1}{72} a^{15} - \frac{1}{72} a^{14} + \frac{1}{72} a^{13} + \frac{1}{36} a^{12} - \frac{1}{24} a^{11} - \frac{1}{72} a^{10} - \frac{13}{72} a^{9} - \frac{1}{18} a^{8} - \frac{1}{24} a^{7} + \frac{5}{72} a^{6} + \frac{29}{72} a^{5} + \frac{5}{18} a^{4} + \frac{13}{36} a^{3} - \frac{1}{3} a^{2} - \frac{5}{18} a - \frac{1}{3}$, $\frac{1}{72} a^{16} - \frac{1}{24} a^{13} - \frac{1}{72} a^{12} - \frac{1}{18} a^{11} - \frac{7}{36} a^{10} + \frac{13}{72} a^{9} + \frac{17}{72} a^{8} - \frac{5}{36} a^{7} + \frac{5}{36} a^{6} + \frac{31}{72} a^{5} - \frac{13}{36} a^{4} - \frac{11}{36} a^{3} - \frac{5}{18} a^{2} + \frac{1}{18} a + \frac{1}{3}$, $\frac{1}{216} a^{17} + \frac{1}{216} a^{16} + \frac{1}{216} a^{15} - \frac{7}{216} a^{13} + \frac{7}{216} a^{12} - \frac{1}{216} a^{11} + \frac{11}{108} a^{10} + \frac{1}{216} a^{9} - \frac{7}{216} a^{8} - \frac{19}{216} a^{7} - \frac{1}{108} a^{6} - \frac{17}{36} a^{5} + \frac{47}{108} a^{4} - \frac{11}{54} a^{3} - \frac{1}{27} a^{2} + \frac{1}{27} a - \frac{10}{27}$, $\frac{1}{61344} a^{18} - \frac{17}{7668} a^{17} + \frac{389}{61344} a^{16} + \frac{5}{30672} a^{15} - \frac{1}{3834} a^{14} + \frac{419}{10224} a^{13} - \frac{113}{6816} a^{12} + \frac{35}{1136} a^{11} - \frac{401}{1917} a^{10} - \frac{329}{10224} a^{9} - \frac{1517}{61344} a^{8} + \frac{533}{10224} a^{7} - \frac{55}{864} a^{6} + \frac{2447}{30672} a^{5} + \frac{6385}{30672} a^{4} - \frac{493}{15336} a^{3} - \frac{1831}{5112} a^{2} + \frac{31}{71} a - \frac{790}{1917}$, $\frac{1}{6452962083897408} a^{19} + \frac{771893153}{201655065121794} a^{18} - \frac{1079832686507}{6452962083897408} a^{17} + \frac{309736062501}{119499297849952} a^{16} - \frac{529996788523}{1613240520974352} a^{15} + \frac{27938188425287}{3226481041948704} a^{14} + \frac{103604501673599}{6452962083897408} a^{13} - \frac{114056803760725}{3226481041948704} a^{12} + \frac{82773705266557}{1613240520974352} a^{11} + \frac{546560748295639}{3226481041948704} a^{10} - \frac{1155540229181101}{6452962083897408} a^{9} - \frac{167086134679255}{3226481041948704} a^{8} + \frac{100119430903481}{2150987361299136} a^{7} + \frac{673855921499537}{3226481041948704} a^{6} + \frac{800066767141481}{3226481041948704} a^{5} + \frac{452885102514013}{1613240520974352} a^{4} + \frac{157380949876535}{1613240520974352} a^{3} + \frac{181981863252757}{403310130243588} a^{2} - \frac{5006783334674}{33609177520299} a + \frac{16347210318049}{33609177520299}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 179913.802936 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.18000.1, 5.1.450000.1 x5, 10.2.1012500000000.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.450000.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5 | Data not computed | ||||||