Normalized defining polynomial
\( x^{20} + 155 x^{18} - 20 x^{17} + 10975 x^{16} - 964 x^{15} + 437600 x^{14} - 23640 x^{13} + 9780190 x^{12} - 1690500 x^{11} + 113584520 x^{10} - 26142000 x^{9} + 1066176320 x^{8} + 1136898640 x^{7} + 20216277025 x^{6} + 26884464018 x^{5} + 131515368985 x^{4} + 135865272390 x^{3} + 525018844775 x^{2} + 156576885230 x + 926878489057 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(73790913002662234133129882812500000000000000000000=2^{20}\cdot 3^{10}\cdot 5^{32}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $311.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3900=2^{2}\cdot 3\cdot 5^{2}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3900}(1,·)$, $\chi_{3900}(3011,·)$, $\chi_{3900}(961,·)$, $\chi_{3900}(2891,·)$, $\chi_{3900}(781,·)$, $\chi_{3900}(1741,·)$, $\chi_{3900}(3671,·)$, $\chi_{3900}(2521,·)$, $\chi_{3900}(3791,·)$, $\chi_{3900}(2341,·)$, $\chi_{3900}(1561,·)$, $\chi_{3900}(3301,·)$, $\chi_{3900}(551,·)$, $\chi_{3900}(1451,·)$, $\chi_{3900}(3121,·)$, $\chi_{3900}(1331,·)$, $\chi_{3900}(181,·)$, $\chi_{3900}(2231,·)$, $\chi_{3900}(671,·)$, $\chi_{3900}(2111,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{9} a^{10} + \frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{1}{3} a^{6} - \frac{4}{9} a^{5} - \frac{1}{9} a^{4} - \frac{2}{9} a^{3} - \frac{4}{9} a^{2} + \frac{1}{9} a + \frac{1}{9}$, $\frac{1}{9} a^{11} + \frac{1}{9} a^{9} - \frac{1}{9} a^{8} - \frac{1}{3} a^{7} - \frac{4}{9} a^{6} - \frac{1}{9} a^{5} - \frac{2}{9} a^{4} - \frac{4}{9} a^{3} + \frac{1}{9} a^{2} + \frac{1}{9} a$, $\frac{1}{9} a^{12} - \frac{1}{9} a^{9} - \frac{4}{9} a^{8} - \frac{1}{3} a^{7} + \frac{2}{9} a^{6} + \frac{2}{9} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{4}{9} a^{2} - \frac{1}{9} a - \frac{1}{9}$, $\frac{1}{9} a^{13} - \frac{4}{9} a^{9} - \frac{2}{9} a^{8} + \frac{1}{9} a^{7} - \frac{1}{9} a^{6} + \frac{2}{9} a^{5} + \frac{2}{9} a^{4} + \frac{1}{3} a^{3} + \frac{4}{9} a^{2} + \frac{1}{9}$, $\frac{1}{9} a^{14} - \frac{2}{9} a^{9} - \frac{4}{9} a^{8} + \frac{4}{9} a^{7} - \frac{1}{9} a^{6} + \frac{4}{9} a^{5} - \frac{1}{9} a^{4} - \frac{4}{9} a^{3} + \frac{2}{9} a^{2} - \frac{4}{9} a + \frac{4}{9}$, $\frac{1}{9} a^{15} - \frac{4}{9} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{2}{9} a^{6} + \frac{1}{3} a^{4} - \frac{2}{9} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{2}{9}$, $\frac{1}{63} a^{16} + \frac{2}{63} a^{15} + \frac{1}{21} a^{14} - \frac{1}{21} a^{13} - \frac{2}{63} a^{11} - \frac{16}{63} a^{9} - \frac{3}{7} a^{8} + \frac{4}{21} a^{7} - \frac{8}{63} a^{6} + \frac{13}{63} a^{5} + \frac{22}{63} a^{4} + \frac{26}{63} a^{3} + \frac{1}{21} a^{2} + \frac{13}{63} a + \frac{8}{63}$, $\frac{1}{2709} a^{17} - \frac{1}{903} a^{16} - \frac{1}{43} a^{15} - \frac{46}{2709} a^{14} - \frac{20}{2709} a^{13} + \frac{110}{2709} a^{12} + \frac{136}{2709} a^{11} - \frac{1}{301} a^{10} + \frac{424}{2709} a^{9} - \frac{73}{387} a^{8} - \frac{67}{903} a^{7} + \frac{179}{2709} a^{6} - \frac{1352}{2709} a^{5} - \frac{19}{387} a^{4} - \frac{127}{2709} a^{3} + \frac{1132}{2709} a^{2} - \frac{260}{2709} a - \frac{5}{63}$, $\frac{1}{24013918686145966497146897041046787} a^{18} + \frac{2156031597066441657054694325201}{24013918686145966497146897041046787} a^{17} + \frac{20074711331479939683180682379877}{2668213187349551833016321893449643} a^{16} - \frac{3454204010151998597404797401291}{79780460751315503312780388840687} a^{15} - \frac{1224101666227468607482199021528644}{24013918686145966497146897041046787} a^{14} + \frac{1199772314411883756512762294883469}{24013918686145966497146897041046787} a^{13} - \frac{649952052506907583501353280515763}{24013918686145966497146897041046787} a^{12} - \frac{196605634145049475770442469098705}{24013918686145966497146897041046787} a^{11} + \frac{1247651115523458366456420950749781}{24013918686145966497146897041046787} a^{10} - \frac{1625646038981196336091755303034795}{24013918686145966497146897041046787} a^{9} - \frac{7809738511780212783734161337036668}{24013918686145966497146897041046787} a^{8} + \frac{4091833657424548125856718097040981}{24013918686145966497146897041046787} a^{7} + \frac{4711169049601067050617913343070565}{24013918686145966497146897041046787} a^{6} + \frac{623972904014149658742696089806154}{8004639562048655499048965680348929} a^{5} + \frac{11612374302367816187933683910284259}{24013918686145966497146897041046787} a^{4} - \frac{11804018921877889196198961116599717}{24013918686145966497146897041046787} a^{3} + \frac{4201313977633296149475861543076871}{24013918686145966497146897041046787} a^{2} - \frac{5383590902991505291078822372183289}{24013918686145966497146897041046787} a - \frac{119059287770762613868798940034212}{558463225259208523189462721884809}$, $\frac{1}{76251313053892411628337909983846342071906760930301336572953846582941} a^{19} + \frac{161183431607093266956671254138378}{10893044721984630232619701426263763153129537275757333796136263797563} a^{18} - \frac{7239469373340608044475510250812567671734296577562122307899492244}{76251313053892411628337909983846342071906760930301336572953846582941} a^{17} - \frac{93815524192028719386035553267194894440693627544934171703008662084}{76251313053892411628337909983846342071906760930301336572953846582941} a^{16} + \frac{1789833106498750222237918362887314803422188230413822220912233352193}{76251313053892411628337909983846342071906760930301336572953846582941} a^{15} - \frac{1844034645877513553864132344223496299733218758378854299380882409}{161892384403168602183307664509227902488124757813803262362959334571} a^{14} - \frac{663339891593890375040187077729629540857793320073165176905494628669}{76251313053892411628337909983846342071906760930301336572953846582941} a^{13} - \frac{48592033764608714895552307012163374248712513206319964558206546655}{25417104351297470542779303327948780690635586976767112190984615527647} a^{12} - \frac{177717356335649916829384126266090070560632364437270745889259685370}{8472368117099156847593101109316260230211862325589037396994871842549} a^{11} - \frac{322009367074835991635260963396088136469764014958281564853958680480}{8472368117099156847593101109316260230211862325589037396994871842549} a^{10} - \frac{19214322145246823667203101906599883965573414091524936989238602722654}{76251313053892411628337909983846342071906760930301336572953846582941} a^{9} - \frac{32146438622594716216674183104990202738650286363544528135690120414775}{76251313053892411628337909983846342071906760930301336572953846582941} a^{8} + \frac{6626329214517768865013275230953466212503182554922103052488731695626}{76251313053892411628337909983846342071906760930301336572953846582941} a^{7} + \frac{2240543986498039232493133625281474788466494289879167196384423846353}{8472368117099156847593101109316260230211862325589037396994871842549} a^{6} - \frac{11912705242587674563033452057008430726119842972724185952382729853349}{25417104351297470542779303327948780690635586976767112190984615527647} a^{5} + \frac{4911326955422540783071381877775983825531234254105183182459203258317}{25417104351297470542779303327948780690635586976767112190984615527647} a^{4} + \frac{12123889043543581917117682922518769542861716272430566233025595367813}{76251313053892411628337909983846342071906760930301336572953846582941} a^{3} + \frac{832261132294515094852947818407887369496756404917316729184263159115}{10893044721984630232619701426263763153129537275757333796136263797563} a^{2} + \frac{10534735506735273156665786528476899882343830181406608877723917483238}{25417104351297470542779303327948780690635586976767112190984615527647} a - \frac{9923888380688378992549525570031740813762011250639474590374765}{21894856837062404472830575772802301625792690985274946304098057}$
Class group and class number
$C_{2}\times C_{2}\times C_{314591282}$, which has order $1258365128$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 47804543.59281621 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.0.316368.2, 5.5.390625.1, 10.10.56654815673828125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | $20$ | R | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ | $20$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||