Properties

Label 20.0.73526643621...1888.2
Degree $20$
Signature $[0, 10]$
Discriminant $2^{34}\cdot 97^{5}\cdot 2657^{4}$
Root discriminant $49.35$
Ramified primes $2, 97, 2657$
Class number $3$ (GRH)
Class group $[3]$ (GRH)
Galois group 20T658

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![303728, -689984, 1246000, -1455424, 1632084, -1410472, 1196960, -742204, 455792, -190644, 88787, -20062, 4865, 628, 154, 28, 178, -24, 27, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 2*x^19 + 27*x^18 - 24*x^17 + 178*x^16 + 28*x^15 + 154*x^14 + 628*x^13 + 4865*x^12 - 20062*x^11 + 88787*x^10 - 190644*x^9 + 455792*x^8 - 742204*x^7 + 1196960*x^6 - 1410472*x^5 + 1632084*x^4 - 1455424*x^3 + 1246000*x^2 - 689984*x + 303728)
 
gp: K = bnfinit(x^20 - 2*x^19 + 27*x^18 - 24*x^17 + 178*x^16 + 28*x^15 + 154*x^14 + 628*x^13 + 4865*x^12 - 20062*x^11 + 88787*x^10 - 190644*x^9 + 455792*x^8 - 742204*x^7 + 1196960*x^6 - 1410472*x^5 + 1632084*x^4 - 1455424*x^3 + 1246000*x^2 - 689984*x + 303728, 1)
 

Normalized defining polynomial

\( x^{20} - 2 x^{19} + 27 x^{18} - 24 x^{17} + 178 x^{16} + 28 x^{15} + 154 x^{14} + 628 x^{13} + 4865 x^{12} - 20062 x^{11} + 88787 x^{10} - 190644 x^{9} + 455792 x^{8} - 742204 x^{7} + 1196960 x^{6} - 1410472 x^{5} + 1632084 x^{4} - 1455424 x^{3} + 1246000 x^{2} - 689984 x + 303728 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(7352664362157151362137165437861888=2^{34}\cdot 97^{5}\cdot 2657^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $49.35$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 97, 2657$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{13} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{6}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{14} - \frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} + \frac{1}{8} a^{9} + \frac{1}{8} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{16} + \frac{1}{8} a^{10} + \frac{3}{16} a^{8} - \frac{1}{8} a^{6} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{16} a^{17} - \frac{1}{8} a^{11} - \frac{1}{16} a^{9} + \frac{1}{8} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{18} - \frac{1}{16} a^{15} + \frac{1}{16} a^{14} + \frac{1}{16} a^{13} - \frac{1}{8} a^{12} + \frac{1}{16} a^{11} - \frac{3}{32} a^{10} - \frac{1}{16} a^{9} + \frac{1}{8} a^{8} + \frac{1}{8} a^{6} + \frac{1}{4} a^{5} + \frac{3}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{3636584765127014286064670125884426492247806122752576} a^{19} + \frac{29889444866673561292814287577453389655997545196931}{3636584765127014286064670125884426492247806122752576} a^{18} - \frac{45313498381980338653369910959747057575293770883747}{1818292382563507143032335062942213246123903061376288} a^{17} + \frac{51531331287896209402321420874234730969703487266361}{1818292382563507143032335062942213246123903061376288} a^{16} + \frac{2069502140621428999372864652985387357302685002919}{454573095640876785758083765735553311530975765344072} a^{15} - \frac{112273516061361720567419423594900353497765918867453}{909146191281753571516167531471106623061951530688144} a^{14} + \frac{45569131323390289095451429499866304710505313926863}{1818292382563507143032335062942213246123903061376288} a^{13} + \frac{142601898171945368100700744530137577178531329491465}{1818292382563507143032335062942213246123903061376288} a^{12} + \frac{274839996372703411560567235865032812818672026533683}{3636584765127014286064670125884426492247806122752576} a^{11} - \frac{408107864745418519391083985006692487358493576480023}{3636584765127014286064670125884426492247806122752576} a^{10} + \frac{28255747824475621477047488524958696119730918882839}{113643273910219196439520941433888327882743941336018} a^{9} + \frac{52942128242212112929447539806450809419501446204955}{909146191281753571516167531471106623061951530688144} a^{8} - \frac{47427045768068669329589541489731807871689453419937}{454573095640876785758083765735553311530975765344072} a^{7} - \frac{218421865219397771199230669501733557356455104268033}{909146191281753571516167531471106623061951530688144} a^{6} + \frac{175614973742911752063888772919410608319037054191733}{909146191281753571516167531471106623061951530688144} a^{5} - \frac{87701387792622924190030688916083865721938136368309}{909146191281753571516167531471106623061951530688144} a^{4} - \frac{58807960847964758191735814414621270230585828380399}{227286547820438392879041882867776655765487882672036} a^{3} + \frac{99553245574106787958258403157267444980672094660551}{227286547820438392879041882867776655765487882672036} a^{2} - \frac{36755525568563422923053111211047104569753480383989}{227286547820438392879041882867776655765487882672036} a - \frac{102955351261049383125399640815329278181119334417073}{227286547820438392879041882867776655765487882672036}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 693949807.812 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T658:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 57600
The 76 conjugacy class representatives for t20n658 are not computed
Character table for t20n658 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), 4.0.6208.2, 10.6.925322313728.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 24 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ $20$ ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.6.1$x^{4} - 6 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
2.4.6.1$x^{4} - 6 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
2.6.11.1$x^{6} + 14$$6$$1$$11$$D_{6}$$[3]_{3}^{2}$
2.6.11.1$x^{6} + 14$$6$$1$$11$$D_{6}$$[3]_{3}^{2}$
$97$97.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
97.2.1.2$x^{2} + 485$$2$$1$$1$$C_2$$[\ ]_{2}$
97.4.0.1$x^{4} - x + 23$$1$$4$$0$$C_4$$[\ ]^{4}$
97.4.0.1$x^{4} - x + 23$$1$$4$$0$$C_4$$[\ ]^{4}$
97.8.4.1$x^{8} + 432814 x^{4} - 912673 x^{2} + 46831989649$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
2657Data not computed