Normalized defining polynomial
\( x^{20} - 2 x^{19} + 27 x^{18} - 36 x^{17} + 400 x^{16} - 644 x^{15} + 5074 x^{14} - 9716 x^{13} + 46637 x^{12} - 83518 x^{11} + 264779 x^{10} - 393960 x^{9} + 860486 x^{8} - 985804 x^{7} + 1459328 x^{6} - 1102432 x^{5} + 964740 x^{4} - 29968 x^{3} + 11056 x^{2} - 47936 x + 378944 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7352664362157151362137165437861888=2^{34}\cdot 97^{5}\cdot 2657^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 97, 2657$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{6}$, $\frac{1}{8} a^{15} - \frac{1}{4} a^{9} - \frac{1}{8} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{16} - \frac{1}{8} a^{10} - \frac{1}{4} a^{9} - \frac{1}{16} a^{8} + \frac{1}{8} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{17} - \frac{1}{8} a^{11} - \frac{1}{4} a^{10} - \frac{1}{16} a^{9} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{32} a^{18} - \frac{1}{32} a^{16} - \frac{1}{16} a^{15} - \frac{1}{8} a^{13} + \frac{1}{16} a^{12} + \frac{5}{32} a^{10} - \frac{1}{8} a^{9} - \frac{1}{32} a^{8} + \frac{1}{16} a^{7} - \frac{1}{16} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{8} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{86190785813031472440324117320804440948674655323584} a^{19} + \frac{145936483545623624304644571367542962397265999679}{10773848226628934055040514665100555118584331915448} a^{18} + \frac{950532223147373697489667916879876288592410146027}{86190785813031472440324117320804440948674655323584} a^{17} - \frac{699093041212726794851045313569052061630597359043}{43095392906515736220162058660402220474337327661792} a^{16} - \frac{474638368442154960420573047959727543603153085027}{10773848226628934055040514665100555118584331915448} a^{15} - \frac{2097959101586531120117391271556916998001913647023}{21547696453257868110081029330201110237168663830896} a^{14} + \frac{1850460538697226939211038924731889092638296760333}{43095392906515736220162058660402220474337327661792} a^{13} - \frac{3862308055247472049305831470558583335478836938}{1346731028328616756880064333137569389823041489431} a^{12} + \frac{1567785157745651670078996350223943001010288596237}{86190785813031472440324117320804440948674655323584} a^{11} + \frac{1032610871971394482599727457821657782445042862733}{21547696453257868110081029330201110237168663830896} a^{10} - \frac{46455548128573944357871663445115165217870637317}{86190785813031472440324117320804440948674655323584} a^{9} + \frac{1151485505582304414208965881027377534846814185523}{43095392906515736220162058660402220474337327661792} a^{8} - \frac{312978524012533904575350912037985962076481861225}{43095392906515736220162058660402220474337327661792} a^{7} - \frac{819068765445796234767163681308319386792541842259}{10773848226628934055040514665100555118584331915448} a^{6} + \frac{2103259433585925799426125563634438224143146026333}{10773848226628934055040514665100555118584331915448} a^{5} + \frac{518262978044574953282601435360599530172321713425}{5386924113314467027520257332550277559292165957724} a^{4} + \frac{3472968416350039142957112367162774015805947750309}{21547696453257868110081029330201110237168663830896} a^{3} + \frac{524492325764006050374682059130901487666276729399}{10773848226628934055040514665100555118584331915448} a^{2} - \frac{341555852926080680997828988231481991456677249963}{5386924113314467027520257332550277559292165957724} a + \frac{113448766021290101658024186573702620750607856424}{1346731028328616756880064333137569389823041489431}$
Class group and class number
$C_{3}\times C_{3}$, which has order $9$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 192406928.902 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 57600 |
| The 76 conjugacy class representatives for t20n658 are not computed |
| Character table for t20n658 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.0.6208.2, 10.6.925322313728.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ | |
| 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ | |
| $97$ | 97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.8.4.1 | $x^{8} + 432814 x^{4} - 912673 x^{2} + 46831989649$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 2657 | Data not computed | ||||||