Normalized defining polynomial
\( x^{20} - 4 x^{19} + 66 x^{18} - 144 x^{17} + 2429 x^{16} - 4256 x^{15} + 66002 x^{14} - 78616 x^{13} + 1344183 x^{12} - 942756 x^{11} + 21478084 x^{10} - 3538344 x^{9} + 277175770 x^{8} + 68785752 x^{7} + 2845773570 x^{6} + 1894261020 x^{5} + 22516220277 x^{4} + 18926594408 x^{3} + 116894317946 x^{2} + 100071545420 x + 314911118323 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(73445842291921443780364922039304192=2^{55}\cdot 3^{10}\cdot 11^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{19} a^{18} - \frac{4}{19} a^{16} - \frac{8}{19} a^{15} - \frac{2}{19} a^{14} + \frac{1}{19} a^{13} + \frac{7}{19} a^{12} + \frac{2}{19} a^{11} + \frac{2}{19} a^{10} + \frac{6}{19} a^{9} + \frac{7}{19} a^{8} - \frac{5}{19} a^{7} - \frac{8}{19} a^{6} + \frac{9}{19} a^{5} - \frac{6}{19} a^{4} + \frac{4}{19} a^{2} - \frac{7}{19} a + \frac{5}{19}$, $\frac{1}{1086230137427624109234947142147327834930653239883844444920966459017291743054381287699440252332919166059} a^{19} + \frac{1089625298067632601119467535516437301422369981382990319741913171366636723683107772711655072218836390}{1086230137427624109234947142147327834930653239883844444920966459017291743054381287699440252332919166059} a^{18} - \frac{176782124066845919591951065928871816273784561184741649346783824611389095443441426010008959163302954393}{1086230137427624109234947142147327834930653239883844444920966459017291743054381287699440252332919166059} a^{17} + \frac{107089022461625632246207419564885528808370504018375938490037976998624324009338031216308356855662428044}{1086230137427624109234947142147327834930653239883844444920966459017291743054381287699440252332919166059} a^{16} + \frac{294692546963120662798498015473498534298092198580139027435328708481886293376242127394859733350900473777}{1086230137427624109234947142147327834930653239883844444920966459017291743054381287699440252332919166059} a^{15} + \frac{125840026424918063291361606159907715747501422124130590548485905867048082266617040589668843599384319154}{1086230137427624109234947142147327834930653239883844444920966459017291743054381287699440252332919166059} a^{14} + \frac{256541632051460147878460226048629831315785921296797523865842943082102409885599154273080022211538633336}{1086230137427624109234947142147327834930653239883844444920966459017291743054381287699440252332919166059} a^{13} - \frac{533423943740206076367960767271443627854768072875270840830060584755693188278595498468480682604275548943}{1086230137427624109234947142147327834930653239883844444920966459017291743054381287699440252332919166059} a^{12} + \frac{444018518901045589849785568675434942571982167724614928386219196274550629936793907407290044702096637749}{1086230137427624109234947142147327834930653239883844444920966459017291743054381287699440252332919166059} a^{11} + \frac{283079576248411511923185510124676680927124065641639679886484967020838381470102760135220164675551550849}{1086230137427624109234947142147327834930653239883844444920966459017291743054381287699440252332919166059} a^{10} + \frac{381143489926628787373954274066435157559844267621162110006135254938153393175185239638219234962385040755}{1086230137427624109234947142147327834930653239883844444920966459017291743054381287699440252332919166059} a^{9} + \frac{74271814453702893616897602370614838428117637990217073098361999761211735900577999420069068387508465404}{1086230137427624109234947142147327834930653239883844444920966459017291743054381287699440252332919166059} a^{8} + \frac{496979007958296419399580571417654322928663571228288147959591419213580029868506621939170735192796811324}{1086230137427624109234947142147327834930653239883844444920966459017291743054381287699440252332919166059} a^{7} + \frac{292023182442961837808414982846354697313035543612949950887150213929333098128933392780743948039763556890}{1086230137427624109234947142147327834930653239883844444920966459017291743054381287699440252332919166059} a^{6} - \frac{153407995905425622410860705328145655067203702309106744214183365507803359962282232492274347736181559841}{1086230137427624109234947142147327834930653239883844444920966459017291743054381287699440252332919166059} a^{5} + \frac{849351436998731081327454515693995786850092912991319622935425527961887998460800176548070166830300566}{11198248839460042363246877754096163246707765359627262318772850092961770546952384409272579920957929547} a^{4} - \frac{69211353815962402915511015299053198405983049409627586689859069715383313866955896417266393549956085587}{1086230137427624109234947142147327834930653239883844444920966459017291743054381287699440252332919166059} a^{3} + \frac{360651343580846442016373639706186881219079982649597243431710731345092990114670578528785033442937471183}{1086230137427624109234947142147327834930653239883844444920966459017291743054381287699440252332919166059} a^{2} + \frac{110766016614033032512660150925933697370530766319221433118899687119573611165060011790325200941066138503}{1086230137427624109234947142147327834930653239883844444920966459017291743054381287699440252332919166059} a - \frac{67650066652612637993958873943461694647179089682822525419601284984341999367247834377641478385592369039}{1086230137427624109234947142147327834930653239883844444920966459017291743054381287699440252332919166059}$
Class group and class number
Not computed
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5:D_4$ (as 20T53):
| A solvable group of order 200 |
| The 65 conjugacy class representatives for $C_5\times C_5:D_4$ are not computed |
| Character table for $C_5\times C_5:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-2}) \), 4.0.202752.6, 10.0.479756288.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $20$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.10.5.1 | $x^{10} - 242 x^{6} - 1331 x^{4} - 131769 x^{2} - 4026275$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 11.10.8.3 | $x^{10} - 11 x^{5} + 847$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |