Normalized defining polynomial
\( x^{20} - 4 x^{19} - 54 x^{18} + 144 x^{17} + 2405 x^{16} - 4352 x^{15} - 63982 x^{14} + 47192 x^{13} + 1404639 x^{12} - 403332 x^{11} - 20955572 x^{10} - 7617672 x^{9} + 273021994 x^{8} + 66920760 x^{7} - 2308326270 x^{6} - 1486736436 x^{5} + 18407809245 x^{4} + 3758832104 x^{3} - 74360770750 x^{2} - 49255787044 x + 279487159291 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(73445842291921443780364922039304192=2^{55}\cdot 3^{10}\cdot 11^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{19} a^{18} + \frac{8}{19} a^{16} + \frac{5}{19} a^{15} - \frac{5}{19} a^{14} + \frac{4}{19} a^{13} + \frac{1}{19} a^{12} + \frac{1}{19} a^{11} - \frac{3}{19} a^{10} - \frac{7}{19} a^{9} - \frac{2}{19} a^{8} - \frac{7}{19} a^{7} - \frac{7}{19} a^{6} - \frac{1}{19} a^{5} - \frac{7}{19} a^{4} + \frac{3}{19} a^{3} + \frac{6}{19} a^{2} - \frac{6}{19} a$, $\frac{1}{993593301494665175805844347891729665879355080855752269876829638887566738417611355889418900253902109243} a^{19} + \frac{690891565004301888018773684231486516055273473785876229876897311131666681823385762869290489681662916}{52294384289192903989781281467985771888387109518723803677727875730924565179874281888916784223889584697} a^{18} + \frac{279033145910311516316119408890403415292960446471243576091949786191987299678601288884019012667366244472}{993593301494665175805844347891729665879355080855752269876829638887566738417611355889418900253902109243} a^{17} + \frac{13875759091222064846530727531072179291570255839220786190081393993222244167506654467686665604106745549}{993593301494665175805844347891729665879355080855752269876829638887566738417611355889418900253902109243} a^{16} + \frac{322536034669107025645318055646454741514445078707298553045203120148750736805007109706480793392107303851}{993593301494665175805844347891729665879355080855752269876829638887566738417611355889418900253902109243} a^{15} + \frac{10398131375047393309212221393814024837255619295980507595415943233896235608091948111384923931111258107}{993593301494665175805844347891729665879355080855752269876829638887566738417611355889418900253902109243} a^{14} + \frac{196781623195519901481037536537942457685942740495898461766955863735634087800252757145213348849789980031}{993593301494665175805844347891729665879355080855752269876829638887566738417611355889418900253902109243} a^{13} - \frac{35994398938594310105004557135168318539231551626955174657523733966069689482083265203274515679166830757}{993593301494665175805844347891729665879355080855752269876829638887566738417611355889418900253902109243} a^{12} - \frac{274872464278529536758021065401456402419645045246586216641327627410250112126746869039170854731607044541}{993593301494665175805844347891729665879355080855752269876829638887566738417611355889418900253902109243} a^{11} + \frac{102689955954365177360860578705229564602686023441051293863423674439737725591552038348894885138559987479}{993593301494665175805844347891729665879355080855752269876829638887566738417611355889418900253902109243} a^{10} - \frac{333487820452451847692335979700301796850163250686653006812490835879488170481172870081173512465463813691}{993593301494665175805844347891729665879355080855752269876829638887566738417611355889418900253902109243} a^{9} + \frac{271855093415161128256112813115340391099459846284814298295309133685559731110722374748478024063090655408}{993593301494665175805844347891729665879355080855752269876829638887566738417611355889418900253902109243} a^{8} - \frac{386290795117251597433377232623157791007476514099174631489450936409095192407146157299939002500685611}{5550800567009302658133208647439830535638855200311465194842623680936127030265985228432507822647497817} a^{7} + \frac{432725512231720721135990526635557296697748008378386425986496195123766159153928753189496508748231449746}{993593301494665175805844347891729665879355080855752269876829638887566738417611355889418900253902109243} a^{6} + \frac{235377484830117790013883022987062385557778040683626142022464699670084064260364636472282882747455669674}{993593301494665175805844347891729665879355080855752269876829638887566738417611355889418900253902109243} a^{5} + \frac{230674552121014709198609688632196525501659277254341690723838341690099791640766483736902064740785390610}{993593301494665175805844347891729665879355080855752269876829638887566738417611355889418900253902109243} a^{4} - \frac{472658028037088839383859106783031251751278818911299772569252121091746983381832819459953090424218326322}{993593301494665175805844347891729665879355080855752269876829638887566738417611355889418900253902109243} a^{3} + \frac{56463554444696898835600094218055398902300114403448887155309890945912128279214547150002913071542487881}{993593301494665175805844347891729665879355080855752269876829638887566738417611355889418900253902109243} a^{2} + \frac{24390869482752055673169700730933812962461985677151758593949185674089080800752435952736258339172448578}{52294384289192903989781281467985771888387109518723803677727875730924565179874281888916784223889584697} a - \frac{16481274373904654394736804912399543394879375482313789610974289325062439132215966535799253400306599227}{52294384289192903989781281467985771888387109518723803677727875730924565179874281888916784223889584697}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 480489914.07005835 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5:D_4$ (as 20T53):
| A solvable group of order 200 |
| The 65 conjugacy class representatives for $C_5\times C_5:D_4$ are not computed |
| Character table for $C_5\times C_5:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-2}) \), 4.0.202752.5, 10.0.479756288.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $20$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.5.4.5 | $x^{5} - 99$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.5 | $x^{5} - 99$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.5.2 | $x^{10} + 1331 x^{4} - 14641 x^{2} + 805255$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |