Normalized defining polynomial
\( x^{20} - 4 x^{19} + 62 x^{18} - 96 x^{17} + 1402 x^{16} + 520 x^{15} + 18452 x^{14} + 37728 x^{13} + 203669 x^{12} + 527812 x^{11} + 1772298 x^{10} + 4473144 x^{9} + 11402270 x^{8} + 24260480 x^{7} + 46631592 x^{6} + 72089680 x^{5} + 100842924 x^{4} + 108321624 x^{3} + 91010256 x^{2} + 53328976 x + 31457276 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7330834517590754249461342942057121972224=2^{50}\cdot 31^{4}\cdot 227^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $98.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 31, 227$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{10}$, $\frac{1}{91000294145611690070125923220791460323676911679918150762488056239577895548} a^{19} - \frac{8397285194186013931025364265710605906094665816470545455919790239396585731}{45500147072805845035062961610395730161838455839959075381244028119788947774} a^{18} + \frac{9140075355627571865362762022492367513161956366607027843032333704937404301}{45500147072805845035062961610395730161838455839959075381244028119788947774} a^{17} - \frac{746846906922137522533920766151700289028216079371195102164207334994118596}{22750073536402922517531480805197865080919227919979537690622014059894473887} a^{16} - \frac{4749773498911453363229496872012854752289458486493017355810918623035650719}{45500147072805845035062961610395730161838455839959075381244028119788947774} a^{15} - \frac{2538880912315307850587303814336853339413849634441154939900450578742906721}{45500147072805845035062961610395730161838455839959075381244028119788947774} a^{14} - \frac{11375042198527053241045726183243974954964749746718963780222636356000011575}{45500147072805845035062961610395730161838455839959075381244028119788947774} a^{13} + \frac{9470617746940758644997106587275235293306821985964134227238566673826616541}{22750073536402922517531480805197865080919227919979537690622014059894473887} a^{12} - \frac{27601037191532892064559600076321803596951817486785671013372239437939776067}{91000294145611690070125923220791460323676911679918150762488056239577895548} a^{11} + \frac{2384915392299399542663035772512143707450992405822670171544918325385924525}{45500147072805845035062961610395730161838455839959075381244028119788947774} a^{10} + \frac{22314927693970825705015459603175574612020221697757723471881016499324439301}{45500147072805845035062961610395730161838455839959075381244028119788947774} a^{9} - \frac{8283226950529300970955195450916551556632532513524032168124878129958900345}{22750073536402922517531480805197865080919227919979537690622014059894473887} a^{8} + \frac{6107459709564915173034115885032303175849154961394778631732120741941983513}{45500147072805845035062961610395730161838455839959075381244028119788947774} a^{7} - \frac{21395294247937913061557171569853527589375854975670173677975935324151781337}{45500147072805845035062961610395730161838455839959075381244028119788947774} a^{6} + \frac{11128528028990503991871289180771697837401141797163644205085351545552493297}{45500147072805845035062961610395730161838455839959075381244028119788947774} a^{5} + \frac{4040142132396902346448752094371788346540594889742486989344131334513536441}{22750073536402922517531480805197865080919227919979537690622014059894473887} a^{4} + \frac{5329188831908703897110261303359675997077109505176375320081613560439102433}{22750073536402922517531480805197865080919227919979537690622014059894473887} a^{3} - \frac{2146395868453306814323696364365839875911102109474801522166904329468813266}{22750073536402922517531480805197865080919227919979537690622014059894473887} a^{2} + \frac{4239854026537414811937193115023313109527977975670230513533346300003205389}{22750073536402922517531480805197865080919227919979537690622014059894473887} a + \frac{5366176115915366493556209590760051798823788261093221439773331084651403316}{22750073536402922517531480805197865080919227919979537690622014059894473887}$
Class group and class number
$C_{2}\times C_{2}\times C_{29820}$, which has order $119280$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10717188.4751 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 216 conjugacy class representatives for t20n1025 are not computed |
| Character table for t20n1025 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.10.207699287474176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | $16{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | R | $16{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.10 | $x^{8} + 16$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 2.12.26.27 | $x^{12} - 2 x^{10} + 4 x^{9} + 4 x^{8} - 2 x^{6} + 4 x^{5} + 4 x^{3} + 2$ | $12$ | $1$ | $26$ | 12T48 | $[4/3, 4/3, 2, 3]_{3}^{2}$ | |
| 31 | Data not computed | ||||||
| 227 | Data not computed | ||||||