Normalized defining polynomial
\( x^{20} - 3 x^{18} + 18 x^{16} + 184 x^{14} + 15 x^{12} + 441 x^{10} + 1587 x^{8} - 5372 x^{6} + 5879 x^{4} - 2750 x^{2} + 625 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(733010848644118650331248974626816=2^{20}\cdot 31^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(124=2^{2}\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{124}(1,·)$, $\chi_{124}(33,·)$, $\chi_{124}(77,·)$, $\chi_{124}(15,·)$, $\chi_{124}(85,·)$, $\chi_{124}(23,·)$, $\chi_{124}(89,·)$, $\chi_{124}(27,·)$, $\chi_{124}(29,·)$, $\chi_{124}(95,·)$, $\chi_{124}(97,·)$, $\chi_{124}(35,·)$, $\chi_{124}(101,·)$, $\chi_{124}(39,·)$, $\chi_{124}(109,·)$, $\chi_{124}(47,·)$, $\chi_{124}(91,·)$, $\chi_{124}(123,·)$, $\chi_{124}(61,·)$, $\chi_{124}(63,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} - \frac{1}{5} a$, $\frac{1}{5} a^{6} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{3}$, $\frac{1}{5} a^{8} - \frac{1}{5} a^{4}$, $\frac{1}{5} a^{9} - \frac{1}{5} a$, $\frac{1}{25} a^{10} - \frac{2}{25} a^{6} + \frac{1}{25} a^{2}$, $\frac{1}{25} a^{11} - \frac{2}{25} a^{7} + \frac{1}{25} a^{3}$, $\frac{1}{25} a^{12} - \frac{2}{25} a^{8} + \frac{1}{25} a^{4}$, $\frac{1}{25} a^{13} - \frac{2}{25} a^{9} + \frac{1}{25} a^{5}$, $\frac{1}{25} a^{14} + \frac{2}{25} a^{6} - \frac{3}{25} a^{2}$, $\frac{1}{125} a^{15} + \frac{2}{125} a^{11} - \frac{7}{125} a^{7} + \frac{4}{125} a^{3}$, $\frac{1}{125} a^{16} + \frac{2}{125} a^{12} - \frac{7}{125} a^{8} + \frac{4}{125} a^{4}$, $\frac{1}{125} a^{17} + \frac{2}{125} a^{13} - \frac{7}{125} a^{9} + \frac{4}{125} a^{5}$, $\frac{1}{20835115625} a^{18} - \frac{3393894}{20835115625} a^{16} + \frac{20979447}{20835115625} a^{14} - \frac{32221218}{20835115625} a^{12} + \frac{113909878}{20835115625} a^{10} - \frac{472523732}{20835115625} a^{8} + \frac{1965044}{39990625} a^{6} - \frac{9893315531}{20835115625} a^{4} + \frac{51644577}{166680925} a^{2} - \frac{4965984}{33336185}$, $\frac{1}{20835115625} a^{19} - \frac{3393894}{20835115625} a^{17} + \frac{20979447}{20835115625} a^{15} - \frac{32221218}{20835115625} a^{13} + \frac{113909878}{20835115625} a^{11} - \frac{472523732}{20835115625} a^{9} + \frac{1965044}{39990625} a^{7} - \frac{1559269281}{20835115625} a^{5} + \frac{51644577}{166680925} a^{3} + \frac{15035727}{33336185} a$
Class group and class number
$C_{123}$, which has order $123$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{156623}{62194375} a^{19} - \frac{468377}{62194375} a^{17} + \frac{2746601}{62194375} a^{15} + \frac{28968506}{62194375} a^{13} + \frac{1558634}{62194375} a^{11} + \frac{55332944}{62194375} a^{9} + \frac{444947}{119375} a^{7} - \frac{885938323}{62194375} a^{5} + \frac{154222026}{12438875} a^{3} - \frac{1701188}{497555} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 95285261.3293 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \), \(\Q(\sqrt{31}) \), \(\Q(\sqrt{-1}) \), \(\Q(i, \sqrt{31})\), 5.5.923521.1, 10.0.26439622160671.1, 10.10.27074173092527104.1, 10.0.873360422339584.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| 31 | Data not computed | ||||||