Normalized defining polynomial
\( x^{20} - 4 x^{19} + 22 x^{18} + 125 x^{16} + 252 x^{15} + 544 x^{14} + 2908 x^{13} - 3650 x^{12} - 2204 x^{11} + 30356 x^{10} + 56748 x^{9} + 48918 x^{8} + 41876 x^{7} + 567360 x^{6} + 977364 x^{5} + 997121 x^{4} + 2976592 x^{3} + 3930518 x^{2} + 3465188 x + 2935789 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7303816416639774784171798530359296=2^{30}\cdot 11^{16}\cdot 23^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{8} - \frac{1}{8} a^{4} + \frac{1}{8}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{9} - \frac{1}{8} a^{5} + \frac{1}{8} a$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{10} - \frac{1}{8} a^{6} + \frac{1}{8} a^{2}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{11} - \frac{1}{8} a^{7} + \frac{1}{8} a^{3}$, $\frac{1}{16} a^{16} - \frac{1}{8} a^{8} + \frac{1}{16}$, $\frac{1}{16} a^{17} - \frac{1}{8} a^{9} + \frac{1}{16} a$, $\frac{1}{5296} a^{18} - \frac{79}{5296} a^{17} + \frac{1}{5296} a^{16} - \frac{15}{2648} a^{15} + \frac{35}{2648} a^{14} - \frac{31}{2648} a^{13} + \frac{19}{1324} a^{12} - \frac{113}{2648} a^{11} - \frac{22}{331} a^{10} + \frac{75}{1324} a^{9} + \frac{161}{2648} a^{8} - \frac{437}{2648} a^{7} - \frac{83}{2648} a^{6} - \frac{589}{2648} a^{5} + \frac{81}{1324} a^{4} + \frac{437}{2648} a^{3} - \frac{609}{5296} a^{2} + \frac{795}{5296} a - \frac{1171}{5296}$, $\frac{1}{242861702513797860218558409612464089500208487907863024} a^{19} + \frac{1391119909462610003585165793141575929166069955425}{15178856407112366263659900600779005593763030494241439} a^{18} + \frac{4651621510186146594950124151115722903531377972051707}{242861702513797860218558409612464089500208487907863024} a^{17} - \frac{362892907014199596244678795463315411860546783784673}{30357712814224732527319801201558011187526060988482878} a^{16} + \frac{2727760644545681926818349424081489057502423599914125}{121430851256898930109279204806232044750104243953931512} a^{15} - \frac{5710910116725037860569836585861237862187907106915439}{121430851256898930109279204806232044750104243953931512} a^{14} - \frac{207697840829455522945293713403049052975706612062071}{5279602228560823048229530643749219336961054084953544} a^{13} - \frac{1024538576383226823936150079178913783848106162651189}{60715425628449465054639602403116022375052121976965756} a^{12} + \frac{23125978411003454316058569843152469642687800549415}{15178856407112366263659900600779005593763030494241439} a^{11} - \frac{2655404711968244929873374550456633835900000097002853}{121430851256898930109279204806232044750104243953931512} a^{10} - \frac{7538929782886980912086562361054376861426933183151663}{60715425628449465054639602403116022375052121976965756} a^{9} - \frac{1433939552270797860310418170552627955966790144553097}{30357712814224732527319801201558011187526060988482878} a^{8} - \frac{12619981985161441940657193869887832666727512338237421}{121430851256898930109279204806232044750104243953931512} a^{7} + \frac{24720781907916435787447132795863948148961879038422447}{121430851256898930109279204806232044750104243953931512} a^{6} + \frac{10547278726387059344449845132570992665438369526516669}{121430851256898930109279204806232044750104243953931512} a^{5} - \frac{5037302574098517192960119090714803954654330860614807}{60715425628449465054639602403116022375052121976965756} a^{4} + \frac{107032361014932167888413159850295536924081772861771471}{242861702513797860218558409612464089500208487907863024} a^{3} + \frac{27737464708390925492120217089965940799075606438394077}{121430851256898930109279204806232044750104243953931512} a^{2} - \frac{32962126886738953647961541298047807744733946593358103}{242861702513797860218558409612464089500208487907863024} a - \frac{329395728046441356351000950765547854716804861787117}{659950278570102881028691330468652417120131760619193}$
Class group and class number
$C_{2}\times C_{4}\times C_{20}$, which has order $160$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2417625.83378 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^4:C_5$ (as 20T46):
| A solvable group of order 160 |
| The 16 conjugacy class representatives for $C_2\times C_2^4:C_5$ |
| Character table for $C_2\times C_2^4:C_5$ |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.0.5048580365312.1, 10.0.2670699013250048.2, 10.10.116117348402176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |