Normalized defining polynomial
\( x^{20} - 6 x^{19} + 24 x^{18} - 90 x^{17} + 351 x^{16} - 870 x^{15} + 806 x^{14} + 4518 x^{13} - 22332 x^{12} + 26478 x^{11} + 156658 x^{10} - 1013022 x^{9} + 3400561 x^{8} - 8011944 x^{7} + 14259924 x^{6} - 19938342 x^{5} + 22096203 x^{4} - 18640836 x^{3} + 10953478 x^{2} - 3882390 x + 612679 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7303816416639774784171798530359296=2^{30}\cdot 11^{16}\cdot 23^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{30337233704259289141020555282997062727101040965490643910791} a^{19} + \frac{9940272187269595702187103983979092943773450255040432311656}{30337233704259289141020555282997062727101040965490643910791} a^{18} - \frac{6933030717091906894833740854849771335829978650117559415949}{30337233704259289141020555282997062727101040965490643910791} a^{17} - \frac{11657546393775166467855204409139828979144205283605464683174}{30337233704259289141020555282997062727101040965490643910791} a^{16} - \frac{34876169383092551199896730979696872226925945155528396828}{30337233704259289141020555282997062727101040965490643910791} a^{15} + \frac{13989214903911046005181304204501965925043862079925087368046}{30337233704259289141020555282997062727101040965490643910791} a^{14} + \frac{5026783863201423961016117322025131775491840016994202378037}{30337233704259289141020555282997062727101040965490643910791} a^{13} + \frac{12852336354542203549544399331917014947198161165145039195383}{30337233704259289141020555282997062727101040965490643910791} a^{12} + \frac{13411909290990231571037331776081625322866613524189942332370}{30337233704259289141020555282997062727101040965490643910791} a^{11} - \frac{25370689905441986325952580531222098576785606241104390720}{72403899055511429930836647453453610327210121636015856589} a^{10} - \frac{11636210609654990102740591268241351924301349276139256766059}{30337233704259289141020555282997062727101040965490643910791} a^{9} + \frac{7741616612804290362021749449604906246755828169080774676692}{30337233704259289141020555282997062727101040965490643910791} a^{8} + \frac{12014819278608523220228065051126676255643779768505169736667}{30337233704259289141020555282997062727101040965490643910791} a^{7} - \frac{10028678310747896346922836981498794763288429548598805626583}{30337233704259289141020555282997062727101040965490643910791} a^{6} - \frac{7184762842503385252768195508448693609035032103134762799537}{30337233704259289141020555282997062727101040965490643910791} a^{5} - \frac{1673550754756718564761706363297096152977537620965688009562}{30337233704259289141020555282997062727101040965490643910791} a^{4} - \frac{2106371744415528067432945650066085191216335572115681107971}{30337233704259289141020555282997062727101040965490643910791} a^{3} + \frac{12719598732893983049667935374169237984229234518026627057891}{30337233704259289141020555282997062727101040965490643910791} a^{2} + \frac{12441277149180393100556557825056189664808912295160678980020}{30337233704259289141020555282997062727101040965490643910791} a + \frac{4329613442550166499448011345691442888896158523956193707818}{30337233704259289141020555282997062727101040965490643910791}$
Class group and class number
$C_{2}\times C_{4}\times C_{20}$, which has order $160$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2545371.69018 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^4:C_5$ (as 20T46):
| A solvable group of order 160 |
| The 16 conjugacy class representatives for $C_2\times C_2^4:C_5$ |
| Character table for $C_2\times C_2^4:C_5$ |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.0.2670699013250048.1, 10.0.5048580365312.1, 10.10.116117348402176.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |