Properties

Label 20.0.73038164166...9296.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{30}\cdot 11^{16}\cdot 23^{6}$
Root discriminant $49.34$
Ramified primes $2, 11, 23$
Class number $160$ (GRH)
Class group $[2, 4, 20]$ (GRH)
Galois group $C_2\times C_2^4:C_5$ (as 20T40)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1294987, -3761584, 8803206, -10686038, 11001528, -7831492, 4734462, -2139784, 822868, -254376, 73744, -30364, 13793, -7814, 3398, -1450, 502, -132, 34, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 6*x^19 + 34*x^18 - 132*x^17 + 502*x^16 - 1450*x^15 + 3398*x^14 - 7814*x^13 + 13793*x^12 - 30364*x^11 + 73744*x^10 - 254376*x^9 + 822868*x^8 - 2139784*x^7 + 4734462*x^6 - 7831492*x^5 + 11001528*x^4 - 10686038*x^3 + 8803206*x^2 - 3761584*x + 1294987)
 
gp: K = bnfinit(x^20 - 6*x^19 + 34*x^18 - 132*x^17 + 502*x^16 - 1450*x^15 + 3398*x^14 - 7814*x^13 + 13793*x^12 - 30364*x^11 + 73744*x^10 - 254376*x^9 + 822868*x^8 - 2139784*x^7 + 4734462*x^6 - 7831492*x^5 + 11001528*x^4 - 10686038*x^3 + 8803206*x^2 - 3761584*x + 1294987, 1)
 

Normalized defining polynomial

\( x^{20} - 6 x^{19} + 34 x^{18} - 132 x^{17} + 502 x^{16} - 1450 x^{15} + 3398 x^{14} - 7814 x^{13} + 13793 x^{12} - 30364 x^{11} + 73744 x^{10} - 254376 x^{9} + 822868 x^{8} - 2139784 x^{7} + 4734462 x^{6} - 7831492 x^{5} + 11001528 x^{4} - 10686038 x^{3} + 8803206 x^{2} - 3761584 x + 1294987 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(7303816416639774784171798530359296=2^{30}\cdot 11^{16}\cdot 23^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $49.34$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{23} a^{17} - \frac{1}{23} a^{16} - \frac{8}{23} a^{15} - \frac{7}{23} a^{14} - \frac{9}{23} a^{13} - \frac{6}{23} a^{12} - \frac{1}{23} a^{11} - \frac{9}{23} a^{10} - \frac{1}{23} a^{9} - \frac{11}{23} a^{8} + \frac{9}{23} a^{7} + \frac{6}{23} a^{6} + \frac{11}{23} a^{5} - \frac{6}{23} a^{4} - \frac{10}{23} a^{3} + \frac{1}{23} a^{2} + \frac{5}{23} a + \frac{11}{23}$, $\frac{1}{23} a^{18} - \frac{9}{23} a^{16} + \frac{8}{23} a^{15} + \frac{7}{23} a^{14} + \frac{8}{23} a^{13} - \frac{7}{23} a^{12} - \frac{10}{23} a^{11} - \frac{10}{23} a^{10} + \frac{11}{23} a^{9} - \frac{2}{23} a^{8} - \frac{8}{23} a^{7} - \frac{6}{23} a^{6} + \frac{5}{23} a^{5} + \frac{7}{23} a^{4} - \frac{9}{23} a^{3} + \frac{6}{23} a^{2} - \frac{7}{23} a + \frac{11}{23}$, $\frac{1}{102645251009738911346243283297425942815871962086542776921153} a^{19} - \frac{758734246940755277562999326761754178428835308375631926138}{102645251009738911346243283297425942815871962086542776921153} a^{18} + \frac{1300263162722492333314503311275908225019363975089528403222}{102645251009738911346243283297425942815871962086542776921153} a^{17} - \frac{16995227964311612869003730451717231678083309927012263906502}{102645251009738911346243283297425942815871962086542776921153} a^{16} + \frac{7833166464238532218396883527180123079876140668504722533046}{102645251009738911346243283297425942815871962086542776921153} a^{15} + \frac{20636847673493551063633348414658761239148820079548580481539}{102645251009738911346243283297425942815871962086542776921153} a^{14} + \frac{33144979789395208336395423973171174139561938126561566232424}{102645251009738911346243283297425942815871962086542776921153} a^{13} - \frac{48653923721351365148566210243661509234722562913644846620240}{102645251009738911346243283297425942815871962086542776921153} a^{12} + \frac{4584281850074682599903751935767936813813434837713832325409}{102645251009738911346243283297425942815871962086542776921153} a^{11} - \frac{7514921053990420294984479590088721638291489365074199700349}{102645251009738911346243283297425942815871962086542776921153} a^{10} + \frac{15971063483769253694685846820070731315620406417874799578210}{102645251009738911346243283297425942815871962086542776921153} a^{9} - \frac{41374089164207038538664696420919861202707365831099057582887}{102645251009738911346243283297425942815871962086542776921153} a^{8} - \frac{22411187823622959498922791763572539757984872900671509244514}{102645251009738911346243283297425942815871962086542776921153} a^{7} + \frac{36133344573199681446081729588380074000805327091216349405618}{102645251009738911346243283297425942815871962086542776921153} a^{6} + \frac{21650376954693819051305324902883117603993588171356281488727}{102645251009738911346243283297425942815871962086542776921153} a^{5} - \frac{46915498964371322627685036261157935883852220684827615477418}{102645251009738911346243283297425942815871962086542776921153} a^{4} - \frac{11509029397859921724364514850944586088281256581956957980136}{102645251009738911346243283297425942815871962086542776921153} a^{3} - \frac{38875124881130069157832156185562800637596260181621063019047}{102645251009738911346243283297425942815871962086542776921153} a^{2} + \frac{15173098876209810286550556821829166450939881577182111713374}{102645251009738911346243283297425942815871962086542776921153} a - \frac{40942773582178947981566135046427146143957880376159174714463}{102645251009738911346243283297425942815871962086542776921153}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{4}\times C_{20}$, which has order $160$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2417625.83378 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_2^4:C_5$ (as 20T40):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 160
The 16 conjugacy class representatives for $C_2\times C_2^4:C_5$
Character table for $C_2\times C_2^4:C_5$

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.0.2670699013250048.1, 10.0.5048580365312.1, 10.10.116117348402176.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 10 siblings: data not computed
Degree 20 siblings: data not computed
Degree 32 sibling: data not computed
Degree 40 siblings: data not computed
Arithmetically equvalently siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$11$11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
$23$23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.1.1$x^{2} - 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.1.1$x^{2} - 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.1$x^{2} - 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.1$x^{2} - 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$