Normalized defining polynomial
\( x^{20} - 9 x^{19} + 61 x^{18} - 221 x^{17} + 822 x^{16} - 1892 x^{15} + 5219 x^{14} - 8472 x^{13} + 27597 x^{12} - 48534 x^{11} + 163342 x^{10} - 238292 x^{9} + 523033 x^{8} - 258674 x^{7} + 365450 x^{6} + 574249 x^{5} + 872126 x^{4} + 87755 x^{3} + 1041518 x^{2} + 1084745 x + 1823113 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(72825983445554038731855441697381112832=2^{10}\cdot 3^{10}\cdot 7^{5}\cdot 19^{10}\cdot 43^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 19, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{5} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{14} - \frac{1}{3} a^{13} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{104253} a^{18} + \frac{12872}{104253} a^{17} + \frac{2137}{104253} a^{16} + \frac{2366}{104253} a^{15} + \frac{8462}{104253} a^{14} - \frac{1228}{3363} a^{13} + \frac{471}{1121} a^{12} + \frac{40291}{104253} a^{11} - \frac{14967}{34751} a^{10} - \frac{9502}{104253} a^{9} - \frac{6301}{34751} a^{8} - \frac{16706}{104253} a^{7} - \frac{37415}{104253} a^{6} - \frac{3774}{34751} a^{5} - \frac{17800}{104253} a^{4} + \frac{23578}{104253} a^{3} - \frac{4301}{104253} a^{2} + \frac{9620}{104253} a + \frac{10892}{104253}$, $\frac{1}{341179666298691837497583326152809271091305698920386719872049} a^{19} + \frac{1317986162838489280502340143188020355773395606467458473}{341179666298691837497583326152809271091305698920386719872049} a^{18} + \frac{156815530682175076260479574136335272269284987236460086213}{341179666298691837497583326152809271091305698920386719872049} a^{17} + \frac{3450014404057745663615526530552205594682387209430112518}{1572256526722082200449692747247968991204173727743717603097} a^{16} + \frac{37639653811785538791863858099695661710644501525967857048334}{341179666298691837497583326152809271091305698920386719872049} a^{15} + \frac{33144430258406635364835626762791396221484765602540018975514}{341179666298691837497583326152809271091305698920386719872049} a^{14} + \frac{27181210387845626714412597847376717575867650476898233724}{62179636650025849735298583224495948804684836690429509727} a^{13} + \frac{85168217893384167833443490358446243339590283248637417216945}{341179666298691837497583326152809271091305698920386719872049} a^{12} + \frac{735686433436897351938541324728058827489768840256980808145}{2145784064771646776714360541841567742712614458618784401711} a^{11} - \frac{36283027560878250853763856065407474727991261082148621580431}{113726555432897279165861108717603090363768566306795573290683} a^{10} - \frac{24013840893932834369444799003687427650167506039332223317859}{48739952328384548213940475164687038727329385560055245696007} a^{9} - \frac{30594369790052127567160838359362881899445287266934879373152}{341179666298691837497583326152809271091305698920386719872049} a^{8} + \frac{48346034559546301890185678309950109243690289547713938708711}{341179666298691837497583326152809271091305698920386719872049} a^{7} + \frac{75363388884111664476884205782514145509007973241956314578703}{341179666298691837497583326152809271091305698920386719872049} a^{6} + \frac{932238574749306690930944435341737531746626014295515002020}{2565260648862344642838972377088791511964704503160802405053} a^{5} - \frac{13311503768654960249258317367502741201582809936260454477114}{113726555432897279165861108717603090363768566306795573290683} a^{4} - \frac{96556956274626590270308747137814713394956171030972762889}{275366962307257334542036582851339201849318562486187828791} a^{3} - \frac{108254721599578380577115204364309721385788153083378010762984}{341179666298691837497583326152809271091305698920386719872049} a^{2} + \frac{135069308047104826939476917744131627593275710334468492767249}{341179666298691837497583326152809271091305698920386719872049} a - \frac{72699698413065108551251955085196279984758837776378240779112}{341179666298691837497583326152809271091305698920386719872049}$
Class group and class number
$C_{2}\times C_{4}\times C_{404}$, which has order $3232$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13701218.918 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_4\times D_5$ (as 20T21):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $D_4\times D_5$ |
| Character table for $D_4\times D_5$ |
Intermediate fields
| \(\Q(\sqrt{57}) \), 4.0.90972.2, 5.5.667489.1, 10.10.2057065406163657.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | R | $20$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | $20$ | R | $20$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $43$ | $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |