Normalized defining polynomial
\( x^{20} - 4 x^{19} + x^{18} - 7 x^{17} + 54 x^{16} + 70 x^{15} - 373 x^{14} - 105 x^{13} + 731 x^{12} + 338 x^{11} + 324 x^{10} - 3962 x^{9} + 3830 x^{8} - 2700 x^{7} + 6404 x^{6} - 8533 x^{5} + 6930 x^{4} - 4565 x^{3} + 2272 x^{2} - 656 x + 79 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(72694810795678541153171964441=3^{26}\cdot 7^{6}\cdot 79^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{15} a^{18} + \frac{4}{15} a^{17} + \frac{4}{15} a^{16} - \frac{1}{15} a^{15} + \frac{1}{3} a^{14} + \frac{4}{15} a^{13} - \frac{2}{5} a^{12} + \frac{1}{15} a^{11} - \frac{2}{15} a^{10} - \frac{7}{15} a^{9} - \frac{4}{15} a^{8} + \frac{4}{15} a^{7} + \frac{1}{5} a^{6} - \frac{2}{15} a^{5} + \frac{1}{15} a^{4} - \frac{7}{15} a^{3} + \frac{1}{3} a^{2} - \frac{2}{15} a - \frac{4}{15}$, $\frac{1}{1223539405370554230812714000145} a^{19} - \frac{4176515271371187459731083310}{244707881074110846162542800029} a^{18} + \frac{381559030992972991118601716498}{1223539405370554230812714000145} a^{17} - \frac{120155439080202710809630795024}{407846468456851410270904666715} a^{16} - \frac{534136302777387181858821469436}{1223539405370554230812714000145} a^{15} + \frac{174131902940882191977373040638}{407846468456851410270904666715} a^{14} - \frac{19167699421646267313078916952}{1223539405370554230812714000145} a^{13} - \frac{110653630713636525646658964382}{244707881074110846162542800029} a^{12} + \frac{506797673034322695807514601069}{1223539405370554230812714000145} a^{11} - \frac{103737191131555923418225220553}{407846468456851410270904666715} a^{10} - \frac{562129729494268594054399056131}{1223539405370554230812714000145} a^{9} - \frac{15678791449485368611055924198}{81569293691370282054180933343} a^{8} + \frac{13125047272682144496017245162}{39469013076469491316539161295} a^{7} - \frac{451330456403745075826216379849}{1223539405370554230812714000145} a^{6} - \frac{158186450140941029245710066571}{1223539405370554230812714000145} a^{5} - \frac{90741554380218309354654348557}{407846468456851410270904666715} a^{4} + \frac{392297238414112514381413462618}{1223539405370554230812714000145} a^{3} - \frac{73691910907683261415728932884}{407846468456851410270904666715} a^{2} + \frac{193526972215093949545317048778}{407846468456851410270904666715} a - \frac{47679601822249632252428956474}{1223539405370554230812714000145}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{205998706160402654}{4916126721362553867} a^{19} + \frac{271944275716685410}{1638708907120851289} a^{18} - \frac{45817462078843564}{1638708907120851289} a^{17} + \frac{1320830345905467313}{4916126721362553867} a^{16} - \frac{3714930861287760260}{1638708907120851289} a^{15} - \frac{15136559885131310602}{4916126721362553867} a^{14} + \frac{78023948138981063537}{4916126721362553867} a^{13} + \frac{28880266930177117108}{4916126721362553867} a^{12} - \frac{53387960998961892023}{1638708907120851289} a^{11} - \frac{90531192239178416240}{4916126721362553867} a^{10} - \frac{17630013688420192155}{1638708907120851289} a^{9} + \frac{846949367996063854925}{4916126721362553867} a^{8} - \frac{23209746976338726280}{158584732947179157} a^{7} + \frac{402940532635225886719}{4916126721362553867} a^{6} - \frac{427955370237596391387}{1638708907120851289} a^{5} + \frac{1659480679044012687970}{4916126721362553867} a^{4} - \frac{390175294511135488447}{1638708907120851289} a^{3} + \frac{759790407244874731580}{4916126721362553867} a^{2} - \frac{349136853159948439292}{4916126721362553867} a + \frac{67894278088604743450}{4916126721362553867} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6605869.44451 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 36 conjugacy class representatives for t20n288 |
| Character table for t20n288 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 5.5.403137.1, 10.8.269619752235771.2, 10.0.487558322307.1, 10.2.89873250745257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.6.11.8 | $x^{6} + 12$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ | |
| 3.6.11.8 | $x^{6} + 12$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ | |
| $7$ | 7.4.3.2 | $x^{4} - 7$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 7.4.3.2 | $x^{4} - 7$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $79$ | $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.4.3.2 | $x^{4} - 79$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 79.4.3.2 | $x^{4} - 79$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |