Normalized defining polynomial
\( x^{20} - 4 x^{19} - 8 x^{18} + 64 x^{17} - 21 x^{16} - 354 x^{15} + 648 x^{14} + 1281 x^{13} - 3262 x^{12} - 1396 x^{11} + 9908 x^{10} - 2908 x^{9} - 7755 x^{8} + 14903 x^{7} + 9671 x^{6} - 6763 x^{5} + 231 x^{4} - 505 x^{3} + 360 x^{2} + 25 x + 25 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7224620588965201519805908203125=5^{15}\cdot 109^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{10} a^{14} - \frac{1}{10} a^{13} + \frac{1}{10} a^{10} - \frac{1}{10} a^{8} - \frac{2}{5} a^{6} - \frac{1}{10} a^{3} + \frac{1}{10} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{15} - \frac{1}{10} a^{13} + \frac{1}{10} a^{11} + \frac{1}{10} a^{10} - \frac{1}{10} a^{9} - \frac{1}{10} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{10} a^{4} - \frac{2}{5} a^{2} - \frac{1}{2} a$, $\frac{1}{20} a^{16} - \frac{1}{20} a^{15} - \frac{1}{20} a^{14} + \frac{1}{20} a^{13} + \frac{1}{20} a^{12} + \frac{3}{20} a^{10} - \frac{1}{4} a^{9} + \frac{1}{10} a^{8} + \frac{9}{20} a^{6} - \frac{3}{10} a^{5} - \frac{9}{20} a^{4} + \frac{3}{10} a^{3} - \frac{3}{10} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{20} a^{17} + \frac{1}{20} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{9}{20} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{20} a^{2} + \frac{1}{4}$, $\frac{1}{220} a^{18} - \frac{1}{110} a^{17} + \frac{1}{44} a^{16} + \frac{7}{220} a^{15} + \frac{1}{220} a^{14} - \frac{1}{110} a^{13} - \frac{8}{55} a^{12} - \frac{19}{110} a^{11} - \frac{8}{55} a^{10} - \frac{27}{220} a^{9} + \frac{103}{220} a^{8} + \frac{19}{44} a^{7} + \frac{19}{110} a^{6} - \frac{1}{44} a^{5} - \frac{7}{20} a^{4} + \frac{1}{44} a^{3} + \frac{19}{55} a^{2} - \frac{7}{22} a - \frac{21}{44}$, $\frac{1}{86979815590624322200477999211010100} a^{19} - \frac{8577063284084030249192308611791}{43489907795312161100238999605505050} a^{18} - \frac{1620704864452317123198282383129677}{86979815590624322200477999211010100} a^{17} + \frac{205655782482978528006713150701549}{8697981559062432220047799921101010} a^{16} - \frac{2041638151703023002635792954803523}{43489907795312161100238999605505050} a^{15} + \frac{356974729229321016054618625956639}{86979815590624322200477999211010100} a^{14} + \frac{14948706773211654636629821250694931}{86979815590624322200477999211010100} a^{13} + \frac{4259210447267298524249994524013273}{86979815590624322200477999211010100} a^{12} - \frac{5871010670466761535277497227264233}{43489907795312161100238999605505050} a^{11} + \frac{10295469550195834958339400139664151}{43489907795312161100238999605505050} a^{10} - \frac{3914029285857573994021945149369392}{21744953897656080550119499802752525} a^{9} - \frac{17980448847700965912061977893605229}{86979815590624322200477999211010100} a^{8} - \frac{2724846995982767129199232434439122}{21744953897656080550119499802752525} a^{7} + \frac{1544049195639253123585820035705181}{43489907795312161100238999605505050} a^{6} + \frac{3716594541179125648481776378267887}{17395963118124864440095599842202020} a^{5} + \frac{18620998037942993375031695893139931}{43489907795312161100238999605505050} a^{4} + \frac{1057033120424458663326853611297757}{4348990779531216110023899960550505} a^{3} + \frac{1987485011856918714714860584072628}{4348990779531216110023899960550505} a^{2} + \frac{213327921585480016382003593718466}{869798155906243222004779992110101} a - \frac{1652870470762030162160318638820233}{3479192623624972888019119968440404}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9643655.9171 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.1485125.1, 5.1.1485125.1 x5, 10.2.11027981328125.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.1485125.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $109$ | 109.2.1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 109.2.1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.2.1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.2.1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.2.1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.2.1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.2.1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.2.1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.2.1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.2.1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |