Normalized defining polynomial
\( x^{20} - 7 x^{19} + 26 x^{18} - 73 x^{17} + 170 x^{16} - 346 x^{15} + 622 x^{14} - 944 x^{13} + 1183 x^{12} - 1208 x^{11} + 995 x^{10} - 691 x^{9} + 396 x^{8} - 166 x^{7} + 19 x^{6} + 42 x^{5} + 19 x^{4} - 19 x^{3} - 2 x^{2} + x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(72240803899347741904989=3^{10}\cdot 37^{2}\cdot 109^{5}\cdot 241^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $13.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 37, 109, 241$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{4065228542923783} a^{19} - \frac{12858034435664}{4065228542923783} a^{18} + \frac{9633253582333}{32009673566329} a^{17} + \frac{511689590997413}{4065228542923783} a^{16} - \frac{1500612018030663}{4065228542923783} a^{15} + \frac{498440793338599}{4065228542923783} a^{14} + \frac{101462569421497}{4065228542923783} a^{13} + \frac{1335279280328439}{4065228542923783} a^{12} + \frac{1974572181032248}{4065228542923783} a^{11} - \frac{1314950986798677}{4065228542923783} a^{10} - \frac{422824981473073}{4065228542923783} a^{9} + \frac{981391752329764}{4065228542923783} a^{8} - \frac{1560473994704942}{4065228542923783} a^{7} - \frac{1588378361270241}{4065228542923783} a^{6} - \frac{2019826360862286}{4065228542923783} a^{5} + \frac{1259678216254071}{4065228542923783} a^{4} + \frac{274206403665953}{4065228542923783} a^{3} - \frac{481061387624563}{4065228542923783} a^{2} + \frac{291858318291886}{4065228542923783} a + \frac{682576089397595}{4065228542923783}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{184003090}{469784017} a^{19} + \frac{1288527076}{469784017} a^{18} - \frac{4774001786}{469784017} a^{17} + \frac{13375406569}{469784017} a^{16} - \frac{31087434676}{469784017} a^{15} + \frac{63100915521}{469784017} a^{14} - \frac{113118991060}{469784017} a^{13} + \frac{170851925051}{469784017} a^{12} - \frac{212402268626}{469784017} a^{11} + \frac{213934530268}{469784017} a^{10} - \frac{171258238827}{469784017} a^{9} + \frac{112943784001}{469784017} a^{8} - \frac{57903364293}{469784017} a^{7} + \frac{17411293212}{469784017} a^{6} + \frac{5769996447}{469784017} a^{5} - \frac{13703433500}{469784017} a^{4} - \frac{1193534096}{469784017} a^{3} + \frac{1962896392}{469784017} a^{2} - \frac{21938048}{469784017} a + \frac{90469611}{469784017} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3087.8504129 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 115200 |
| The 119 conjugacy class representatives for t20n781 are not computed |
| Character table for t20n781 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.981.1, 10.0.236184579.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $37$ | 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 37.5.0.1 | $x^{5} - x + 13$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 37.5.0.1 | $x^{5} - x + 13$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 37.6.0.1 | $x^{6} - x + 20$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $109$ | 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 109.2.1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.4.2.1 | $x^{4} + 1199 x^{2} + 427716$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 109.4.0.1 | $x^{4} - x + 30$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 109.4.0.1 | $x^{4} - x + 30$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 109.4.2.1 | $x^{4} + 1199 x^{2} + 427716$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 241 | Data not computed | ||||||