Normalized defining polynomial
\( x^{20} - x^{19} + 8 x^{18} + 4 x^{17} + 22 x^{16} + 86 x^{15} - 7 x^{14} + 353 x^{13} + 1368 x^{12} + 295 x^{11} + 5903 x^{10} + 9139 x^{9} + 5706 x^{8} + 27869 x^{7} + 20349 x^{6} + 39353 x^{5} + 67346 x^{4} + 50508 x^{3} + 82588 x^{2} + 28758 x + 23577 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(720989134450436684961004342041=3^{2}\cdot 65657^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 65657$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{127286853273807145507642387978560710173737198211925} a^{19} - \frac{1231129595507390568627806125774727072119305277587}{25457370654761429101528477595712142034747439642385} a^{18} + \frac{18585689620358352972119835777076630846233135442173}{127286853273807145507642387978560710173737198211925} a^{17} + \frac{22613869600709132615181155991035779486086846018172}{127286853273807145507642387978560710173737198211925} a^{16} - \frac{30316299699061217404680995751816965892962043927476}{127286853273807145507642387978560710173737198211925} a^{15} - \frac{10787978695398544759948901502466736008080513006646}{25457370654761429101528477595712142034747439642385} a^{14} - \frac{57809557675119054931074191199398005345421928993137}{127286853273807145507642387978560710173737198211925} a^{13} + \frac{53536712703373835920596958161430780324442374109961}{127286853273807145507642387978560710173737198211925} a^{12} + \frac{44463270525212135175864071343066297997592319272969}{127286853273807145507642387978560710173737198211925} a^{11} + \frac{6030679564756022439955648193911869434746755285999}{127286853273807145507642387978560710173737198211925} a^{10} - \frac{49306647709834770249775221496962679093864824188388}{127286853273807145507642387978560710173737198211925} a^{9} - \frac{25596082502851883001371467234461748958825848516644}{127286853273807145507642387978560710173737198211925} a^{8} + \frac{30751470749433337860243493974441208685525334035327}{127286853273807145507642387978560710173737198211925} a^{7} + \frac{38018564699716093535543206680715682494370613261301}{127286853273807145507642387978560710173737198211925} a^{6} + \frac{2138247092891403577653017498445347916465400256303}{25457370654761429101528477595712142034747439642385} a^{5} + \frac{45562727086602941960543337980929580708795779508118}{127286853273807145507642387978560710173737198211925} a^{4} - \frac{26878737274024274320930776366827457465163729487216}{127286853273807145507642387978560710173737198211925} a^{3} - \frac{16382582858796469575198456925106658134264282873523}{127286853273807145507642387978560710173737198211925} a^{2} - \frac{11097656811628120268587533215979683376886871570441}{25457370654761429101528477595712142034747439642385} a - \frac{26807529129099046009484412443020059611573444974722}{127286853273807145507642387978560710173737198211925}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6215538.56678 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 126 conjugacy class representatives for t20n664 are not computed |
| Character table for t20n664 is not computed |
Intermediate fields
| 5.5.65657.1, 10.2.283036930148393.1, 10.4.849110790445179.1, 10.4.12932524947.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 65657 | Data not computed | ||||||