Normalized defining polynomial
\( x^{20} - 5 x^{19} + 21 x^{18} - 27 x^{17} + 111 x^{16} - 259 x^{15} + 253 x^{14} - 95 x^{13} + 1552 x^{12} + 672 x^{11} + 3307 x^{10} + 7274 x^{9} + 32883 x^{8} + 76288 x^{7} + 224448 x^{6} + 456093 x^{5} + 786619 x^{4} + 872615 x^{3} + 686603 x^{2} + 258966 x + 49111 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(72098801162275858741260523848334336=2^{10}\cdot 31^{3}\cdot 36497^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 31, 36497$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{16} - \frac{1}{6} a^{15} + \frac{1}{3} a^{14} - \frac{1}{6} a^{13} + \frac{1}{6} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{2} a^{7} - \frac{1}{6} a^{6} - \frac{1}{6} a^{5} + \frac{1}{6} a^{4} + \frac{1}{3} a^{3} + \frac{1}{6} a^{2} - \frac{1}{6}$, $\frac{1}{6} a^{17} + \frac{1}{6} a^{15} + \frac{1}{6} a^{14} - \frac{1}{6} a^{13} + \frac{1}{6} a^{12} - \frac{1}{6} a^{11} + \frac{1}{3} a^{10} - \frac{1}{6} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{6} a^{2} - \frac{1}{6} a - \frac{1}{6}$, $\frac{1}{6} a^{18} - \frac{1}{6} a^{15} - \frac{1}{2} a^{14} + \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{6} a^{9} + \frac{1}{6} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{6} a^{4} - \frac{1}{6} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{46284435322714306673912790420267123564518633343912138} a^{19} - \frac{1725537816557093310887550950758450415652172365093038}{23142217661357153336956395210133561782259316671956069} a^{18} - \frac{646559593506991040734368358149341866084389060162335}{15428145107571435557970930140089041188172877781304046} a^{17} - \frac{975925260741000282714933477210357705836677021733665}{46284435322714306673912790420267123564518633343912138} a^{16} - \frac{3911560120042517412616711402125070138834389587513659}{23142217661357153336956395210133561782259316671956069} a^{15} - \frac{11205676086384289270278351397257629599926872225875735}{46284435322714306673912790420267123564518633343912138} a^{14} - \frac{7403850254817368563925784028711952996675035443917509}{15428145107571435557970930140089041188172877781304046} a^{13} + \frac{14891716477262754346081112316447902864260775431353131}{46284435322714306673912790420267123564518633343912138} a^{12} - \frac{3832395207662063277447214212883454642460824545255253}{46284435322714306673912790420267123564518633343912138} a^{11} - \frac{3326785196186554052235715945871227811385431973756865}{46284435322714306673912790420267123564518633343912138} a^{10} - \frac{6096148771163310482471893103664160666249140714796490}{23142217661357153336956395210133561782259316671956069} a^{9} - \frac{8472340152936052976972461029194556493375947526554988}{23142217661357153336956395210133561782259316671956069} a^{8} - \frac{1173072964864379801274131472044654541889101114310825}{7714072553785717778985465070044520594086438890652023} a^{7} + \frac{3144519183165515809637548958422495721363887748928147}{7714072553785717778985465070044520594086438890652023} a^{6} - \frac{4300257897660660726195350437507507311965621405376689}{46284435322714306673912790420267123564518633343912138} a^{5} - \frac{1147759090188535674361772475179998296371000713956590}{7714072553785717778985465070044520594086438890652023} a^{4} - \frac{13799599061813580773880747183411830545923830060055373}{46284435322714306673912790420267123564518633343912138} a^{3} + \frac{824993139565058671655542109899556754975769825113643}{46284435322714306673912790420267123564518633343912138} a^{2} + \frac{15968150430514768867392783227228836557975263447103089}{46284435322714306673912790420267123564518633343912138} a - \frac{19810528900423682800981155189647929580515816080150493}{46284435322714306673912790420267123564518633343912138}$
Class group and class number
$C_{2}\times C_{644}$, which has order $1288$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1964183.29544 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7680 |
| The 40 conjugacy class representatives for t20n365 |
| Character table for t20n365 is not computed |
Intermediate fields
| 10.10.48615135735473.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| 31 | Data not computed | ||||||
| 36497 | Data not computed | ||||||