Normalized defining polynomial
\( x^{20} - 2 x^{19} + 2 x^{18} + 6 x^{16} - 14 x^{15} + 16 x^{14} + 2 x^{13} + x^{12} - 12 x^{11} + 24 x^{10} + 4 x^{9} - 32 x^{8} + 52 x^{7} - 30 x^{6} + 24 x^{4} - 18 x^{3} + 8 x^{2} - 4 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7196545015488566001664=2^{30}\cdot 1609^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $12.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 1609$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{11} a^{18} + \frac{3}{11} a^{17} - \frac{1}{11} a^{16} - \frac{4}{11} a^{15} + \frac{4}{11} a^{14} + \frac{1}{11} a^{13} + \frac{4}{11} a^{12} + \frac{4}{11} a^{11} + \frac{4}{11} a^{10} + \frac{2}{11} a^{9} - \frac{5}{11} a^{8} - \frac{2}{11} a^{7} + \frac{4}{11} a^{6} - \frac{2}{11} a^{5} - \frac{2}{11} a^{4} + \frac{4}{11} a^{3} + \frac{3}{11} a^{2} + \frac{2}{11} a - \frac{3}{11}$, $\frac{1}{577504644211} a^{19} + \frac{14961917859}{577504644211} a^{18} + \frac{279456753010}{577504644211} a^{17} + \frac{256210863195}{577504644211} a^{16} + \frac{121812977046}{577504644211} a^{15} + \frac{251964673821}{577504644211} a^{14} + \frac{136725760599}{577504644211} a^{13} + \frac{70308554190}{577504644211} a^{12} - \frac{133809138413}{577504644211} a^{11} + \frac{35441940450}{577504644211} a^{10} - \frac{109900683336}{577504644211} a^{9} - \frac{281004045640}{577504644211} a^{8} + \frac{244582903249}{577504644211} a^{7} + \frac{811322744}{52500422201} a^{6} + \frac{7903001004}{577504644211} a^{5} - \frac{242262460503}{577504644211} a^{4} - \frac{81586978138}{577504644211} a^{3} - \frac{1783883917}{577504644211} a^{2} + \frac{20118307119}{577504644211} a + \frac{204227800517}{577504644211}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{67712926826}{52500422201} a^{19} - \frac{97035022998}{52500422201} a^{18} + \frac{74306720579}{52500422201} a^{17} + \frac{54600965394}{52500422201} a^{16} + \frac{422633175625}{52500422201} a^{15} - \frac{705703745770}{52500422201} a^{14} + \frac{644264265723}{52500422201} a^{13} + \frac{590052077619}{52500422201} a^{12} + \frac{281864390484}{52500422201} a^{11} - \frac{639670847470}{52500422201} a^{10} + \frac{1235490245950}{52500422201} a^{9} + \frac{1056457875083}{52500422201} a^{8} - \frac{1785618575940}{52500422201} a^{7} + \frac{2544081661998}{52500422201} a^{6} - \frac{435779796013}{52500422201} a^{5} - \frac{564412588962}{52500422201} a^{4} + \frac{1447316320638}{52500422201} a^{3} - \frac{418144531731}{52500422201} a^{2} + \frac{185256315495}{52500422201} a - \frac{111093563455}{52500422201} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 713.051816016 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 36 conjugacy class representatives for t20n279 |
| Character table for t20n279 is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 5.1.1609.1, 10.0.2651014144.4, 10.0.2651014144.3, 10.2.2651014144.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 1609 | Data not computed | ||||||