Normalized defining polynomial
\( x^{20} - 4 x^{19} + 6 x^{18} - 8 x^{17} + 19 x^{16} - 24 x^{15} + 36 x^{14} - 40 x^{13} + 34 x^{12} - 48 x^{11} + 48 x^{10} - 200 x^{9} - 58 x^{8} + 376 x^{7} + 652 x^{6} - 216 x^{5} - 963 x^{4} - 492 x^{3} + 442 x^{2} + 528 x + 167 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(71311236675536751140274176=2^{42}\cdot 359\cdot 461^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 359, 461$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{8} - \frac{1}{8} a^{4} + \frac{1}{8}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{9} - \frac{1}{8} a^{5} + \frac{1}{8} a$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{10} - \frac{1}{8} a^{6} + \frac{1}{8} a^{2}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{11} - \frac{1}{8} a^{7} + \frac{1}{8} a^{3}$, $\frac{1}{16} a^{16} - \frac{1}{8} a^{8} + \frac{1}{16}$, $\frac{1}{32} a^{17} - \frac{1}{32} a^{16} - \frac{1}{16} a^{13} - \frac{1}{16} a^{12} - \frac{1}{8} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{3}{16} a^{5} - \frac{3}{16} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{5}{32} a - \frac{7}{32}$, $\frac{1}{64} a^{18} - \frac{1}{64} a^{16} - \frac{1}{16} a^{15} + \frac{1}{32} a^{14} - \frac{1}{16} a^{13} - \frac{1}{32} a^{12} - \frac{1}{16} a^{11} - \frac{1}{8} a^{10} - \frac{1}{16} a^{9} - \frac{3}{16} a^{7} + \frac{7}{32} a^{6} - \frac{3}{16} a^{5} + \frac{1}{32} a^{4} + \frac{5}{16} a^{3} - \frac{25}{64} a^{2} + \frac{5}{16} a + \frac{17}{64}$, $\frac{1}{171999663942272} a^{19} + \frac{368357158881}{171999663942272} a^{18} - \frac{1241065074529}{171999663942272} a^{17} + \frac{4540660108979}{171999663942272} a^{16} - \frac{492907409553}{85999831971136} a^{15} - \frac{1706885379625}{85999831971136} a^{14} - \frac{4575307327671}{85999831971136} a^{13} - \frac{3368807220471}{85999831971136} a^{12} + \frac{3535904634073}{42999915985568} a^{11} - \frac{2768693060603}{42999915985568} a^{10} - \frac{2628141595771}{42999915985568} a^{9} + \frac{5310090217239}{42999915985568} a^{8} + \frac{8636176424913}{85999831971136} a^{7} + \frac{19314539300121}{85999831971136} a^{6} + \frac{6152135642975}{85999831971136} a^{5} + \frac{16701983578143}{85999831971136} a^{4} + \frac{35691968971723}{171999663942272} a^{3} + \frac{18733169687643}{171999663942272} a^{2} - \frac{79285168317107}{171999663942272} a - \frac{32670992156943}{171999663942272}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 57586.1354732 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 245760 |
| The 201 conjugacy class representatives for t20n887 are not computed |
| Character table for t20n887 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 5.1.29504.1, 10.2.6963888128.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 359 | Data not computed | ||||||
| 461 | Data not computed | ||||||