Normalized defining polynomial
\( x^{20} - 21168 x^{14} + 508032 x^{12} + 5334336 x^{10} + 176033088 x^{8} + 88720676352 x^{4} + 11178805220352 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(709769256018536283137282494313791488=2^{30}\cdot 3^{10}\cdot 7^{15}\cdot 11^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{6} a^{2}$, $\frac{1}{6} a^{3}$, $\frac{1}{252} a^{4}$, $\frac{1}{252} a^{5}$, $\frac{1}{1512} a^{6}$, $\frac{1}{1512} a^{7}$, $\frac{1}{63504} a^{8}$, $\frac{1}{63504} a^{9}$, $\frac{1}{1524096} a^{10} - \frac{1}{1008} a^{4} - \frac{1}{12} a^{2} + \frac{1}{4}$, $\frac{1}{1524096} a^{11} - \frac{1}{1008} a^{5} - \frac{1}{12} a^{3} + \frac{1}{4} a$, $\frac{1}{64012032} a^{12} + \frac{1}{6048} a^{6} - \frac{1}{504} a^{4} - \frac{1}{24} a^{2}$, $\frac{1}{64012032} a^{13} + \frac{1}{6048} a^{7} - \frac{1}{504} a^{5} - \frac{1}{24} a^{3}$, $\frac{1}{384072192} a^{14} - \frac{1}{254016} a^{8} - \frac{1}{3024} a^{6} + \frac{1}{1008} a^{4}$, $\frac{1}{384072192} a^{15} - \frac{1}{254016} a^{9} - \frac{1}{3024} a^{7} + \frac{1}{1008} a^{5}$, $\frac{1}{16131032064} a^{16} - \frac{1}{127008} a^{8} - \frac{1}{6048} a^{6} + \frac{1}{1008} a^{4} - \frac{1}{12} a^{2} - \frac{1}{4}$, $\frac{1}{16131032064} a^{17} - \frac{1}{127008} a^{9} - \frac{1}{6048} a^{7} + \frac{1}{1008} a^{5} - \frac{1}{12} a^{3} - \frac{1}{4} a$, $\frac{1}{280359885975386112} a^{18} + \frac{643105}{23363323831282176} a^{16} + \frac{15493}{41205156668928} a^{14} + \frac{1136783}{185423205010176} a^{12} + \frac{70447}{315345586752} a^{10} + \frac{1758431}{367903184544} a^{8} + \frac{37939}{182491659} a^{6} - \frac{1748983}{2919866544} a^{4} - \frac{386215}{17380158} a^{2} - \frac{2321853}{5793386}$, $\frac{1}{280359885975386112} a^{19} + \frac{643105}{23363323831282176} a^{17} + \frac{15493}{41205156668928} a^{15} + \frac{1136783}{185423205010176} a^{13} + \frac{70447}{315345586752} a^{11} + \frac{1758431}{367903184544} a^{9} + \frac{37939}{182491659} a^{7} - \frac{1748983}{2919866544} a^{5} - \frac{386215}{17380158} a^{3} - \frac{2321853}{5793386} a$
Class group and class number
Not computed
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5:D_4$ (as 20T53):
| A solvable group of order 200 |
| The 65 conjugacy class representatives for $C_5\times C_5:D_4$ are not computed |
| Character table for $C_5\times C_5:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 4.0.2173248.2, 10.0.246071287.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $20$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.15.1 | $x^{10} + 2 x^{8} - 4 x^{6} + 16 x^{2} - 32$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ |
| 2.10.15.5 | $x^{10} + 14 x^{8} + 40 x^{6} - 144 x^{4} - 432 x^{2} + 33632$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ | |
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $11$ | 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 11.10.9.8 | $x^{10} + 33$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |