Properties

Label 20.0.70976925601...1488.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{30}\cdot 3^{10}\cdot 7^{15}\cdot 11^{9}$
Root discriminant $62.02$
Ramified primes $2, 3, 7, 11$
Class number Not computed
Class group Not computed
Galois group $C_5\times C_5:D_4$ (as 20T53)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![11178805220352, 0, 0, 0, 88720676352, 0, 0, 0, 176033088, 0, -5334336, 0, 508032, 0, 21168, 0, 0, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 21168*x^14 + 508032*x^12 - 5334336*x^10 + 176033088*x^8 + 88720676352*x^4 + 11178805220352)
 
gp: K = bnfinit(x^20 + 21168*x^14 + 508032*x^12 - 5334336*x^10 + 176033088*x^8 + 88720676352*x^4 + 11178805220352, 1)
 

Normalized defining polynomial

\( x^{20} + 21168 x^{14} + 508032 x^{12} - 5334336 x^{10} + 176033088 x^{8} + 88720676352 x^{4} + 11178805220352 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(709769256018536283137282494313791488=2^{30}\cdot 3^{10}\cdot 7^{15}\cdot 11^{9}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $62.02$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{6} a^{2}$, $\frac{1}{6} a^{3}$, $\frac{1}{252} a^{4}$, $\frac{1}{252} a^{5}$, $\frac{1}{1512} a^{6}$, $\frac{1}{1512} a^{7}$, $\frac{1}{63504} a^{8}$, $\frac{1}{63504} a^{9}$, $\frac{1}{1524096} a^{10} + \frac{1}{1008} a^{4} - \frac{1}{12} a^{2} - \frac{1}{4}$, $\frac{1}{1524096} a^{11} + \frac{1}{1008} a^{5} - \frac{1}{12} a^{3} - \frac{1}{4} a$, $\frac{1}{64012032} a^{12} - \frac{1}{6048} a^{6} - \frac{1}{504} a^{4} + \frac{1}{24} a^{2}$, $\frac{1}{64012032} a^{13} - \frac{1}{6048} a^{7} - \frac{1}{504} a^{5} + \frac{1}{24} a^{3}$, $\frac{1}{384072192} a^{14} + \frac{1}{254016} a^{8} - \frac{1}{3024} a^{6} - \frac{1}{1008} a^{4}$, $\frac{1}{384072192} a^{15} + \frac{1}{254016} a^{9} - \frac{1}{3024} a^{7} - \frac{1}{1008} a^{5}$, $\frac{1}{16131032064} a^{16} - \frac{1}{127008} a^{8} + \frac{1}{6048} a^{6} + \frac{1}{1008} a^{4} - \frac{1}{12} a^{2} - \frac{1}{4}$, $\frac{1}{16131032064} a^{17} - \frac{1}{127008} a^{9} + \frac{1}{6048} a^{7} + \frac{1}{1008} a^{5} - \frac{1}{12} a^{3} - \frac{1}{4} a$, $\frac{1}{280359885975386112} a^{18} - \frac{643105}{23363323831282176} a^{16} + \frac{15493}{41205156668928} a^{14} - \frac{1136783}{185423205010176} a^{12} + \frac{70447}{315345586752} a^{10} - \frac{1758431}{367903184544} a^{8} + \frac{37939}{182491659} a^{6} + \frac{1748983}{2919866544} a^{4} - \frac{386215}{17380158} a^{2} + \frac{2321853}{5793386}$, $\frac{1}{280359885975386112} a^{19} - \frac{643105}{23363323831282176} a^{17} + \frac{15493}{41205156668928} a^{15} - \frac{1136783}{185423205010176} a^{13} + \frac{70447}{315345586752} a^{11} - \frac{1758431}{367903184544} a^{9} + \frac{37939}{182491659} a^{7} + \frac{1748983}{2919866544} a^{5} - \frac{386215}{17380158} a^{3} + \frac{2321853}{5793386} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Not computed

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Not computed
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  Not computed
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_5\times C_5:D_4$ (as 20T53):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 200
The 65 conjugacy class representatives for $C_5\times C_5:D_4$ are not computed
Character table for $C_5\times C_5:D_4$ is not computed

Intermediate fields

\(\Q(\sqrt{-7}) \), 4.0.2173248.1, 10.0.246071287.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R $20$ R R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ $20$ ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ $20$ ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}$ $20$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.15.13$x^{10} - 2 x^{8} - 4 x^{6} - 48 x^{2} - 96$$2$$5$$15$$C_{10}$$[3]^{5}$
2.10.15.9$x^{10} - 6 x^{8} - 24 x^{6} + 80 x^{4} + 336 x^{2} + 33056$$2$$5$$15$$C_{10}$$[3]^{5}$
3Data not computed
7Data not computed
$11$11.10.9.5$x^{10} - 8019$$10$$1$$9$$C_{10}$$[\ ]_{10}$
11.10.0.1$x^{10} + x^{2} - x + 6$$1$$10$$0$$C_{10}$$[\ ]^{10}$