Normalized defining polynomial
\( x^{20} - 8 x^{19} + 48 x^{18} - 194 x^{17} + 657 x^{16} - 1808 x^{15} + 4398 x^{14} - 9430 x^{13} + 18493 x^{12} - 33000 x^{11} + 56352 x^{10} - 91110 x^{9} + 153485 x^{8} - 242326 x^{7} + 407778 x^{6} - 515444 x^{5} + 857558 x^{4} - 668326 x^{3} + 1079706 x^{2} - 137098 x + 8641 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(706388839731582814105670315409408=2^{30}\cdot 3^{15}\cdot 71^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{73} a^{18} + \frac{3}{73} a^{17} - \frac{31}{73} a^{16} + \frac{5}{73} a^{15} + \frac{23}{73} a^{14} + \frac{2}{73} a^{13} + \frac{19}{73} a^{12} - \frac{28}{73} a^{11} - \frac{3}{73} a^{10} + \frac{33}{73} a^{9} - \frac{35}{73} a^{8} + \frac{1}{73} a^{7} + \frac{28}{73} a^{6} + \frac{11}{73} a^{5} - \frac{22}{73} a^{4} - \frac{5}{73} a^{3} + \frac{27}{73} a^{2} - \frac{30}{73} a - \frac{33}{73}$, $\frac{1}{4661993259163710335665520046835519628032429515574543} a^{19} + \frac{9001552123970987285231012605220426458619446841538}{4661993259163710335665520046835519628032429515574543} a^{18} - \frac{1626989940423444259579396290380797183410905703972405}{4661993259163710335665520046835519628032429515574543} a^{17} - \frac{602866701275825984703978397122281464826938800398646}{4661993259163710335665520046835519628032429515574543} a^{16} + \frac{643913255325149302414506840555589456187640169586861}{4661993259163710335665520046835519628032429515574543} a^{15} + \frac{799794994113740119822623252131501011304993986464427}{4661993259163710335665520046835519628032429515574543} a^{14} - \frac{1670533569966610488835647909980823439903248950528689}{4661993259163710335665520046835519628032429515574543} a^{13} - \frac{222184682076653128138265371480405282900393117360925}{4661993259163710335665520046835519628032429515574543} a^{12} - \frac{1642051858701948787094647239287473585995024228226433}{4661993259163710335665520046835519628032429515574543} a^{11} + \frac{521667392097149285541282642431134411233653169361485}{4661993259163710335665520046835519628032429515574543} a^{10} + \frac{127105088531788086634110900835097318141132195223964}{4661993259163710335665520046835519628032429515574543} a^{9} - \frac{2017191442040128267082158920442314750237053822896843}{4661993259163710335665520046835519628032429515574543} a^{8} + \frac{470306279304358896978295351853566394094545986624494}{4661993259163710335665520046835519628032429515574543} a^{7} + \frac{1370995755075737969802004437903237129778868343484086}{4661993259163710335665520046835519628032429515574543} a^{6} + \frac{1639009118537131297319652966318012147201349687815607}{4661993259163710335665520046835519628032429515574543} a^{5} - \frac{247762406112189555322829529715194388984819672422265}{4661993259163710335665520046835519628032429515574543} a^{4} + \frac{1824364701526253113831286648494220812033226690369851}{4661993259163710335665520046835519628032429515574543} a^{3} + \frac{1634407025381130127106867535409462695802162151391330}{4661993259163710335665520046835519628032429515574543} a^{2} - \frac{1443507158174001797459777668400035706242544485787875}{4661993259163710335665520046835519628032429515574543} a - \frac{2175346406076252391979648642924055526963976896841621}{4661993259163710335665520046835519628032429515574543}$
Class group and class number
$C_{2}\times C_{82}$, which has order $164$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 528205.092142 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5:D_4$ (as 20T53):
| A solvable group of order 200 |
| The 65 conjugacy class representatives for $C_5\times C_5:D_4$ are not computed |
| Character table for $C_5\times C_5:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 4.0.122688.1, 10.10.6323239406592.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $20$ | $20$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $71$ | 71.10.0.1 | $x^{10} - x + 22$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ |
| 71.10.9.7 | $x^{10} + 568$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |