Normalized defining polynomial
\( x^{20} + 16 x^{18} + 56 x^{16} + 1808 x^{12} + 12240 x^{10} + 12656 x^{8} + 153664 x^{4} + 307328 x^{2} + 134456 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(70600893601130608587973468583100416=2^{59}\cdot 7^{5}\cdot 31^{4}\cdot 53^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 31, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{14} a^{12} + \frac{1}{7} a^{10} + \frac{1}{7} a^{4} + \frac{2}{7} a^{2}$, $\frac{1}{14} a^{13} + \frac{1}{7} a^{11} + \frac{1}{7} a^{5} + \frac{2}{7} a^{3}$, $\frac{1}{196} a^{14} + \frac{1}{98} a^{12} + \frac{1}{7} a^{10} + \frac{11}{49} a^{6} + \frac{15}{49} a^{4} + \frac{2}{7} a^{2}$, $\frac{1}{196} a^{15} + \frac{1}{98} a^{13} + \frac{1}{7} a^{11} + \frac{11}{49} a^{7} + \frac{15}{49} a^{5} + \frac{2}{7} a^{3}$, $\frac{1}{1372} a^{16} + \frac{1}{686} a^{14} + \frac{1}{49} a^{12} + \frac{3}{14} a^{10} - \frac{125}{686} a^{8} + \frac{162}{343} a^{6} - \frac{19}{49} a^{4} + \frac{3}{7} a^{2}$, $\frac{1}{1372} a^{17} + \frac{1}{686} a^{15} + \frac{1}{49} a^{13} + \frac{3}{14} a^{11} - \frac{125}{686} a^{9} - \frac{19}{686} a^{7} - \frac{19}{49} a^{5} + \frac{3}{7} a^{3}$, $\frac{1}{449480900685169220} a^{18} + \frac{69494559081327}{449480900685169220} a^{16} + \frac{65723075411769}{64211557240738460} a^{14} + \frac{144041868193001}{4586539802909890} a^{12} - \frac{20003203554375541}{112370225171292305} a^{10} - \frac{13651099609840677}{224740450342584610} a^{8} - \frac{4732729325725146}{16052889310184615} a^{6} - \frac{70953697820598}{2293269901454945} a^{4} - \frac{125360461058352}{327609985922135} a^{2} + \frac{859907828401}{46801426560305}$, $\frac{1}{449480900685169220} a^{19} + \frac{69494559081327}{449480900685169220} a^{17} + \frac{65723075411769}{64211557240738460} a^{15} + \frac{144041868193001}{4586539802909890} a^{13} - \frac{20003203554375541}{112370225171292305} a^{11} - \frac{13651099609840677}{224740450342584610} a^{9} + \frac{6587430658734323}{32105778620369230} a^{7} - \frac{70953697820598}{2293269901454945} a^{5} - \frac{125360461058352}{327609985922135} a^{3} + \frac{859907828401}{46801426560305} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 629916041.473 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 960 |
| The 35 conjugacy class representatives for t20n174 |
| Character table for t20n174 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.0.14336.1, 5.3.26288.1, 10.6.1415288717312.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 31 | Data not computed | ||||||
| $53$ | 53.8.4.1 | $x^{8} + 101124 x^{4} - 148877 x^{2} + 2556515844$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 53.12.0.1 | $x^{12} - x + 12$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |