Normalized defining polynomial
\( x^{20} - 3 x^{19} + 8 x^{18} - 13 x^{17} + 28 x^{16} - 52 x^{15} + 76 x^{14} - 91 x^{13} + 116 x^{12} - 184 x^{11} + 234 x^{10} - 211 x^{9} + 230 x^{8} - 301 x^{7} + 304 x^{6} - 217 x^{5} + 139 x^{4} - 172 x^{3} + 128 x^{2} - 12 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(69974789420587753212890625=3^{10}\cdot 5^{10}\cdot 3319^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 3319$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{2678433} a^{18} - \frac{760777}{2678433} a^{17} + \frac{884606}{2678433} a^{16} + \frac{920551}{2678433} a^{15} + \frac{181}{807} a^{14} - \frac{181779}{892811} a^{13} - \frac{392268}{892811} a^{12} - \frac{284914}{2678433} a^{11} + \frac{33854}{892811} a^{10} - \frac{73524}{892811} a^{9} - \frac{146288}{892811} a^{8} + \frac{1161077}{2678433} a^{7} - \frac{334532}{892811} a^{6} - \frac{279360}{892811} a^{5} - \frac{754601}{2678433} a^{4} - \frac{61388}{2678433} a^{3} - \frac{129796}{2678433} a^{2} + \frac{940460}{2678433} a + \frac{201967}{2678433}$, $\frac{1}{18868657853079} a^{19} + \frac{1935430}{18868657853079} a^{18} - \frac{1159736635628}{6289552617693} a^{17} + \frac{1852237027406}{18868657853079} a^{16} - \frac{1377839528188}{6289552617693} a^{15} + \frac{3887280207869}{18868657853079} a^{14} + \frac{2198213819792}{6289552617693} a^{13} - \frac{7657059642952}{18868657853079} a^{12} - \frac{4541879485130}{18868657853079} a^{11} + \frac{2915119767391}{6289552617693} a^{10} + \frac{2975966843245}{6289552617693} a^{9} - \frac{7347439518301}{18868657853079} a^{8} - \frac{1441319713223}{18868657853079} a^{7} - \frac{2929511224910}{6289552617693} a^{6} - \frac{1414257501536}{18868657853079} a^{5} - \frac{43147333193}{2096517539231} a^{4} + \frac{7934216499136}{18868657853079} a^{3} + \frac{2844639614294}{6289552617693} a^{2} - \frac{3888744717355}{18868657853079} a + \frac{3078104076632}{18868657853079}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2142950200}{23381236497} a^{19} - \frac{6401656598}{23381236497} a^{18} + \frac{5519993277}{7793745499} a^{17} - \frac{26424865711}{23381236497} a^{16} + \frac{18757342914}{7793745499} a^{15} - \frac{106403328202}{23381236497} a^{14} + \frac{50357270021}{7793745499} a^{13} - \frac{176600363578}{23381236497} a^{12} + \frac{223203720991}{23381236497} a^{11} - \frac{123305066234}{7793745499} a^{10} + \frac{157306723888}{7793745499} a^{9} - \frac{401017631845}{23381236497} a^{8} + \frac{430711348906}{23381236497} a^{7} - \frac{199599827819}{7793745499} a^{6} + \frac{603712289920}{23381236497} a^{5} - \frac{139910888471}{7793745499} a^{4} + \frac{244468774555}{23381236497} a^{3} - \frac{114322858484}{7793745499} a^{2} + \frac{279448002566}{23381236497} a - \frac{2862575350}{23381236497} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 110484.915685 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_5\wr C_2$ (as 20T100):
| A solvable group of order 400 |
| The 28 conjugacy class representatives for $C_2\times D_5\wr C_2$ |
| Character table for $C_2\times D_5\wr C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-3}, \sqrt{5})\), 10.6.34424253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||
| 3319 | Data not computed | ||||||