Normalized defining polynomial
\( x^{20} + 8 x^{18} + 4 x^{16} + 96 x^{14} + 762 x^{12} - 160 x^{10} - 5176 x^{8} + 6288 x^{6} + 44361 x^{4} + 42280 x^{2} + 676 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6976189580273785130450944000000=2^{40}\cdot 5^{6}\cdot 67^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{11} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{3}{8} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{3}{8} a^{4} - \frac{1}{2}$, $\frac{1}{8} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{3}{8} a^{5} - \frac{1}{2} a$, $\frac{1}{8} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{3}{8} a^{6}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{8} - \frac{3}{8} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{16} - \frac{1}{2} a^{9} - \frac{3}{8} a^{8} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{17} - \frac{3}{8} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{1239468443664816} a^{18} - \frac{56760752267087}{1239468443664816} a^{16} + \frac{15170341227001}{413156147888272} a^{14} + \frac{13291590738321}{413156147888272} a^{12} - \frac{1370051888677}{413156147888272} a^{10} - \frac{1}{2} a^{9} - \frac{238651137966775}{1239468443664816} a^{8} - \frac{126267527522667}{413156147888272} a^{6} - \frac{153315448412931}{413156147888272} a^{4} + \frac{2945494082151}{103289036972068} a^{2} + \frac{21769298364391}{309867110916204}$, $\frac{1}{16113089767642608} a^{19} - \frac{676494974099495}{16113089767642608} a^{17} + \frac{221748415171137}{5371029922547536} a^{15} - \frac{38352927747713}{5371029922547536} a^{13} + \frac{205208022055459}{5371029922547536} a^{11} - \frac{3957056468961223}{16113089767642608} a^{9} - \frac{1}{2} a^{8} - \frac{746001749355075}{5371029922547536} a^{7} - \frac{1}{2} a^{6} + \frac{1654242698598259}{5371029922547536} a^{5} - \frac{461855172292155}{1342757480636884} a^{3} - \frac{1}{2} a^{2} - \frac{133164257093711}{4028272441910652} a$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{5586974899}{33709392819336} a^{19} - \frac{45113426155}{33709392819336} a^{17} - \frac{8638218397}{11236464273112} a^{15} - \frac{179969387501}{11236464273112} a^{13} - \frac{1434380170671}{11236464273112} a^{11} + \frac{512289509689}{33709392819336} a^{9} + \frac{9542111880855}{11236464273112} a^{7} - \frac{11162326717929}{11236464273112} a^{5} - \frac{41792532686317}{5618232136556} a^{3} - \frac{33547646840519}{4213674102417} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22547882.1224 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 36 conjugacy class representatives for t20n288 |
| Character table for t20n288 is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 5.5.5745920.1, 10.0.528249546342400.1, 10.4.2641247731712000.1, 10.6.165077983232000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $67$ | 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.6.4.1 | $x^{6} + 2345 x^{3} + 7756992$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 67.6.4.1 | $x^{6} + 2345 x^{3} + 7756992$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |