Normalized defining polynomial
\( x^{20} - x^{19} + 3 x^{18} - 11 x^{17} + 12 x^{16} + 2 x^{15} + 9 x^{14} + 23 x^{13} - 83 x^{12} + 77 x^{11} + 590 x^{10} - 913 x^{9} + 2621 x^{8} - 4347 x^{7} + 8288 x^{6} - 8424 x^{5} + 12027 x^{4} - 11924 x^{3} + 13150 x^{2} - 7824 x + 3433 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6965462128295683654948996096=2^{10}\cdot 11^{16}\cdot 23^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{61912693439121229667624335605859404707} a^{19} + \frac{834126907724845522341299365799110719}{61912693439121229667624335605859404707} a^{18} + \frac{24034867747001776290827034020094486514}{61912693439121229667624335605859404707} a^{17} - \frac{23065269262180474610543448853690542926}{61912693439121229667624335605859404707} a^{16} + \frac{24646834484229129500198086050764982345}{61912693439121229667624335605859404707} a^{15} + \frac{3824346591671262280665727473166939162}{61912693439121229667624335605859404707} a^{14} - \frac{14848467646966760073551983379952791495}{61912693439121229667624335605859404707} a^{13} - \frac{10182324296846314734873334583443984038}{61912693439121229667624335605859404707} a^{12} - \frac{18591775116872732421010330699204469543}{61912693439121229667624335605859404707} a^{11} - \frac{2628973172240297858190444231033273531}{61912693439121229667624335605859404707} a^{10} - \frac{3425246247263081323960779437728197530}{61912693439121229667624335605859404707} a^{9} - \frac{367121559744509586970728856880267341}{61912693439121229667624335605859404707} a^{8} + \frac{14213926743951303280635484550883000611}{61912693439121229667624335605859404707} a^{7} - \frac{29167194670696939998219956113518334251}{61912693439121229667624335605859404707} a^{6} + \frac{14682383955209997499454025855754695586}{61912693439121229667624335605859404707} a^{5} + \frac{842693658471067649917242989904076075}{2691856236483531724679318939385191509} a^{4} + \frac{16978676092625835674664088574977316571}{61912693439121229667624335605859404707} a^{3} - \frac{6654877804492504351052923320089008191}{61912693439121229667624335605859404707} a^{2} - \frac{9945237900007239561026322913007825141}{61912693439121229667624335605859404707} a - \frac{21665080158055762150913494960272583957}{61912693439121229667624335605859404707}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 158254.649471 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 81920 |
| The 332 conjugacy class representatives for t20n751 are not computed |
| Character table for t20n751 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.4.4930254263.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.5 | $x^{10} - 9 x^{8} + 50 x^{6} - 50 x^{4} + 45 x^{2} - 5$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.3.2 | $x^{4} - 23$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |