Normalized defining polynomial
\( x^{20} - 3 x^{19} + x^{18} + 26 x^{17} - 96 x^{16} + 191 x^{15} - 44 x^{14} - 676 x^{13} + 2492 x^{12} - 5379 x^{11} + 8623 x^{10} - 11136 x^{9} + 11981 x^{8} - 10163 x^{7} + 8050 x^{6} - 3668 x^{5} + 2997 x^{4} + 554 x^{3} + 1338 x^{2} + 686 x + 593 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6965462128295683654948996096=2^{10}\cdot 11^{16}\cdot 23^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{13} + \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{132} a^{15} + \frac{7}{132} a^{14} + \frac{5}{33} a^{13} - \frac{29}{132} a^{12} - \frac{35}{132} a^{11} + \frac{5}{132} a^{10} - \frac{23}{66} a^{9} - \frac{43}{132} a^{8} + \frac{1}{44} a^{7} - \frac{10}{33} a^{6} - \frac{1}{12} a^{5} - \frac{23}{66} a^{4} - \frac{49}{132} a^{3} + \frac{5}{11} a^{2} + \frac{29}{132} a - \frac{17}{66}$, $\frac{1}{264} a^{16} - \frac{1}{264} a^{15} - \frac{1}{88} a^{14} - \frac{1}{11} a^{13} - \frac{1}{264} a^{12} - \frac{1}{22} a^{11} + \frac{13}{264} a^{10} + \frac{7}{66} a^{9} - \frac{49}{264} a^{8} - \frac{31}{264} a^{7} - \frac{9}{44} a^{6} + \frac{9}{22} a^{5} + \frac{1}{3} a^{4} - \frac{19}{66} a^{3} - \frac{1}{3} a^{2} + \frac{8}{33} a - \frac{91}{264}$, $\frac{1}{264} a^{17} + \frac{1}{264} a^{14} + \frac{5}{24} a^{13} + \frac{1}{88} a^{12} - \frac{7}{264} a^{11} - \frac{71}{264} a^{10} + \frac{59}{264} a^{9} + \frac{1}{22} a^{8} + \frac{59}{264} a^{7} - \frac{53}{132} a^{6} - \frac{14}{33} a^{5} - \frac{5}{33} a^{4} - \frac{4}{11} a^{3} - \frac{2}{11} a^{2} + \frac{89}{264} a - \frac{95}{264}$, $\frac{1}{528} a^{18} - \frac{1}{528} a^{17} + \frac{1}{528} a^{15} + \frac{9}{88} a^{14} + \frac{5}{33} a^{13} - \frac{5}{264} a^{12} + \frac{25}{66} a^{11} - \frac{1}{264} a^{10} + \frac{217}{528} a^{9} - \frac{85}{528} a^{8} - \frac{1}{16} a^{7} - \frac{1}{88} a^{6} + \frac{17}{44} a^{5} - \frac{47}{132} a^{4} - \frac{9}{22} a^{3} - \frac{127}{528} a^{2} - \frac{13}{132} a - \frac{37}{528}$, $\frac{1}{4972761962426689376374704} a^{19} - \frac{1756900621813372218397}{4972761962426689376374704} a^{18} + \frac{3700035648008268281101}{2486380981213344688187352} a^{17} - \frac{5149046532842034999463}{4972761962426689376374704} a^{16} - \frac{3975346316198579732743}{2486380981213344688187352} a^{15} - \frac{96170595876005617631409}{828793660404448229395784} a^{14} - \frac{36276972566139253956769}{1243190490606672344093676} a^{13} + \frac{6310178243553727896537}{75344878218586202672344} a^{12} - \frac{221068995892841918739193}{621595245303336172046838} a^{11} + \frac{1347401716014604327024331}{4972761962426689376374704} a^{10} - \frac{1028195340717697906806643}{4972761962426689376374704} a^{9} - \frac{800506008273890354425103}{1657587320808896458791568} a^{8} - \frac{121222007781309967402841}{414396830202224114697892} a^{7} + \frac{127625889337332532320017}{1243190490606672344093676} a^{6} - \frac{64439136823251155518079}{1243190490606672344093676} a^{5} + \frac{1272812638215023184243}{414396830202224114697892} a^{4} - \frac{2123629923376646836891759}{4972761962426689376374704} a^{3} - \frac{299909031219295425277703}{1243190490606672344093676} a^{2} - \frac{189374213134844165463031}{4972761962426689376374704} a + \frac{445573335999061464290815}{2486380981213344688187352}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 152173.593776 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 81920 |
| The 332 conjugacy class representatives for t20n751 are not computed |
| Character table for t20n751 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.4.4930254263.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.5 | $x^{10} - 9 x^{8} + 50 x^{6} - 50 x^{4} + 45 x^{2} - 5$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.3.2 | $x^{4} - 23$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |