Normalized defining polynomial
\( x^{20} - 4 x^{19} - 15 x^{18} + 82 x^{17} + 939 x^{16} - 3668 x^{15} + 15256 x^{14} - 37616 x^{13} + 120164 x^{12} + 133364 x^{11} + 6370066 x^{10} - 23278548 x^{9} + 266289852 x^{8} - 545513248 x^{7} + 3789497873 x^{6} - 5663152336 x^{5} + 25947045609 x^{4} - 21357492094 x^{3} + 113274078335 x^{2} - 6996693352 x + 216476277061 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(69444824657298740769595326110530848000000000000000=2^{20}\cdot 3^{10}\cdot 5^{15}\cdot 61^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $310.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3660=2^{2}\cdot 3\cdot 5\cdot 61\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3660}(1,·)$, $\chi_{3660}(1667,·)$, $\chi_{3660}(203,·)$, $\chi_{3660}(3023,·)$, $\chi_{3660}(2449,·)$, $\chi_{3660}(2327,·)$, $\chi_{3660}(2521,·)$, $\chi_{3660}(2929,·)$, $\chi_{3660}(863,·)$, $\chi_{3660}(3169,·)$, $\chi_{3660}(3047,·)$, $\chi_{3660}(3181,·)$, $\chi_{3660}(1583,·)$, $\chi_{3660}(241,·)$, $\chi_{3660}(949,·)$, $\chi_{3660}(2807,·)$, $\chi_{3660}(1681,·)$, $\chi_{3660}(827,·)$, $\chi_{3660}(1789,·)$, $\chi_{3660}(1343,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{33} a^{11} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2} - \frac{4}{11} a + \frac{1}{3}$, $\frac{1}{957} a^{12} + \frac{1}{319} a^{11} - \frac{5}{87} a^{10} - \frac{23}{87} a^{9} + \frac{35}{87} a^{8} - \frac{10}{29} a^{7} + \frac{14}{87} a^{6} - \frac{8}{87} a^{5} + \frac{20}{87} a^{4} + \frac{11}{29} a^{3} - \frac{386}{957} a^{2} - \frac{14}{957} a - \frac{1}{3}$, $\frac{1}{957} a^{13} - \frac{2}{319} a^{11} - \frac{8}{87} a^{10} + \frac{17}{87} a^{9} + \frac{13}{29} a^{8} - \frac{4}{29} a^{7} - \frac{7}{29} a^{6} - \frac{14}{87} a^{5} - \frac{9}{29} a^{4} + \frac{439}{957} a^{3} - \frac{4}{29} a^{2} - \frac{16}{957} a - \frac{1}{3}$, $\frac{1}{957} a^{14} - \frac{4}{319} a^{11} - \frac{13}{87} a^{10} - \frac{4}{29} a^{9} + \frac{8}{29} a^{8} + \frac{31}{87} a^{7} + \frac{4}{29} a^{6} + \frac{41}{87} a^{5} - \frac{155}{957} a^{4} + \frac{4}{29} a^{3} + \frac{20}{87} a^{2} - \frac{142}{957} a - \frac{1}{3}$, $\frac{1}{957} a^{15} + \frac{3}{319} a^{11} - \frac{14}{87} a^{10} - \frac{20}{87} a^{9} - \frac{13}{87} a^{8} + \frac{2}{29} a^{6} + \frac{65}{957} a^{5} + \frac{20}{87} a^{4} + \frac{10}{87} a^{3} - \frac{28}{87} a^{2} - \frac{284}{957} a$, $\frac{1}{957} a^{16} - \frac{7}{957} a^{11} - \frac{4}{87} a^{10} - \frac{3}{29} a^{9} + \frac{4}{87} a^{8} - \frac{14}{87} a^{7} - \frac{364}{957} a^{6} - \frac{8}{29} a^{5} + \frac{11}{29} a^{4} - \frac{35}{87} a^{3} - \frac{1}{3} a^{2} - \frac{367}{957} a - \frac{1}{3}$, $\frac{1}{305283} a^{17} + \frac{18}{101761} a^{16} + \frac{74}{305283} a^{15} + \frac{113}{305283} a^{14} - \frac{142}{305283} a^{13} - \frac{34}{305283} a^{12} + \frac{125}{9251} a^{11} - \frac{815}{9251} a^{10} + \frac{12869}{27753} a^{9} - \frac{1636}{9251} a^{8} - \frac{670}{3509} a^{7} - \frac{43570}{305283} a^{6} + \frac{77927}{305283} a^{5} - \frac{2885}{305283} a^{4} - \frac{28395}{101761} a^{3} - \frac{47926}{305283} a^{2} - \frac{208}{957} a - \frac{1}{3}$, $\frac{1}{784162480751767852512179457} a^{18} + \frac{690674332456821787796}{784162480751767852512179457} a^{17} - \frac{2382224820518614375142}{6480681659105519442249417} a^{16} + \frac{35938947719575022587810}{261387493583922617504059819} a^{15} - \frac{64563285764995830968779}{784162480751767852512179457} a^{14} + \frac{106003403055173331882896}{784162480751767852512179457} a^{13} + \frac{34485564339059305441542}{261387493583922617504059819} a^{12} + \frac{1041084088535715658036571}{71287498250160713864743587} a^{11} - \frac{3279984816938953150725899}{71287498250160713864743587} a^{10} + \frac{6172697511132035616780502}{23762499416720237954914529} a^{9} + \frac{250864265750851129688646532}{784162480751767852512179457} a^{8} + \frac{280592826932305541262926684}{784162480751767852512179457} a^{7} - \frac{1797455936884334466935798}{23762499416720237954914529} a^{6} - \frac{171817805977896883963192640}{784162480751767852512179457} a^{5} - \frac{81846552697320057309329131}{784162480751767852512179457} a^{4} - \frac{114687539155168053947513417}{784162480751767852512179457} a^{3} - \frac{159722856262609726679971799}{784162480751767852512179457} a^{2} - \frac{5703396277640485033716}{28255052814173885796569} a - \frac{1189148418216363510845}{2568641164924898708779}$, $\frac{1}{56022758438497633359847328649923376319846445011795713} a^{19} + \frac{33207966494024778863035465}{56022758438497633359847328649923376319846445011795713} a^{18} + \frac{41571021814382333854823922882421414557313643240}{56022758438497633359847328649923376319846445011795713} a^{17} + \frac{8277435414031952417086823786988280651225849653961}{18674252812832544453282442883307792106615481670598571} a^{16} - \frac{5749798628681938544118889257021160473883039703936}{56022758438497633359847328649923376319846445011795713} a^{15} - \frac{2870068625908873649297701271286161321121713028459}{18674252812832544453282442883307792106615481670598571} a^{14} - \frac{16972728190647038236906799436783183838735201682750}{56022758438497633359847328649923376319846445011795713} a^{13} - \frac{17033730981345092634722565625524625278417808874362}{56022758438497633359847328649923376319846445011795713} a^{12} - \frac{10286510006555078336012503555500615340108013639611}{5092978039863421214531575331811216029076949546526883} a^{11} + \frac{124635869332273825053726210367170560510696863939001}{5092978039863421214531575331811216029076949546526883} a^{10} - \frac{1285651987126731425748961981526097753717949431566975}{18674252812832544453282442883307792106615481670598571} a^{9} + \frac{26457500939361093961469155065288412590493122480047147}{56022758438497633359847328649923376319846445011795713} a^{8} + \frac{19198945226346916723426167674427683703602209557892678}{56022758438497633359847328649923376319846445011795713} a^{7} - \frac{26614955944101294345398432519003020681954899370582630}{56022758438497633359847328649923376319846445011795713} a^{6} - \frac{12932010107623830608000546294195153032098015569748428}{56022758438497633359847328649923376319846445011795713} a^{5} + \frac{4478254958232747113379519581674283541422885736337628}{18674252812832544453282442883307792106615481670598571} a^{4} - \frac{4947827983283953270306586598079220254657981193747903}{56022758438497633359847328649923376319846445011795713} a^{3} - \frac{27165149085810289378293154564443530023344430748230601}{56022758438497633359847328649923376319846445011795713} a^{2} + \frac{80128966003755143047978657829427178995116427620092}{175619932409083490156261218338317794106101708500927} a + \frac{91413933261723398819268204603234962022248109173}{550532703476750752840944258113848884345146421633}$
Class group and class number
$C_{10}\times C_{64857610}$, which has order $648576100$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 366097410.81371444 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.18000.1, 5.5.13845841.1, 10.10.599085353116503125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | $20$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $61$ | 61.5.4.1 | $x^{5} - 61$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 61.5.4.1 | $x^{5} - 61$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 61.5.4.1 | $x^{5} - 61$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 61.5.4.1 | $x^{5} - 61$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |