Normalized defining polynomial
\( x^{20} - 2 x^{19} + 72 x^{17} - 242 x^{16} - 3504 x^{15} - 3202 x^{14} - 14490 x^{13} + 225499 x^{12} - 126135 x^{11} + 1940277 x^{10} + 10604317 x^{9} + 46160552 x^{8} - 13194435 x^{7} + 101111009 x^{6} - 1350280281 x^{5} + 23164696201 x^{4} - 25819961020 x^{3} + 106836459007 x^{2} - 399048852098 x + 964658227471 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(68634231647302196434922446986223013=7^{15}\cdot 11^{9}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{5105877969365029395745385465270665036054615795974921360839657866312612596002548648067588160507611654623437400674101} a^{19} + \frac{1474304401132635727492669139881752260294380724125641801365051626834745396047178313803533840956538043248743458101692}{5105877969365029395745385465270665036054615795974921360839657866312612596002548648067588160507611654623437400674101} a^{18} + \frac{1396635873842625438418808912645116905939814611474881643734568476995607457563182397702318500522417398156446539025645}{5105877969365029395745385465270665036054615795974921360839657866312612596002548648067588160507611654623437400674101} a^{17} + \frac{1272180124380654885911286514820196967985639342391485682053684402540805179472708242885366671655363505501470286648884}{5105877969365029395745385465270665036054615795974921360839657866312612596002548648067588160507611654623437400674101} a^{16} + \frac{2031234820558825677843013493986836485935992667330091265998185950927466383132009335758678225958655010965145499611462}{5105877969365029395745385465270665036054615795974921360839657866312612596002548648067588160507611654623437400674101} a^{15} + \frac{1509646264334235525189588487810582428945943779921547919937419342744213966569358776522883622563273753900936164983086}{5105877969365029395745385465270665036054615795974921360839657866312612596002548648067588160507611654623437400674101} a^{14} + \frac{893940462938894508593709424498301799088536912399882544354397469849432378438770224744765687356478918818216439290479}{5105877969365029395745385465270665036054615795974921360839657866312612596002548648067588160507611654623437400674101} a^{13} - \frac{148366306439606049780929450868044563561824647223118786170665556517839308195460570285239787546091309944073773243305}{5105877969365029395745385465270665036054615795974921360839657866312612596002548648067588160507611654623437400674101} a^{12} - \frac{1889775346721251376983903595542142796265789260733831601183856090844198373549764367060119168581959703903825358691470}{5105877969365029395745385465270665036054615795974921360839657866312612596002548648067588160507611654623437400674101} a^{11} - \frac{1360313366589466043488478337117678148126744646176793928954785753080774548980087586922236326331015078901958072017868}{5105877969365029395745385465270665036054615795974921360839657866312612596002548648067588160507611654623437400674101} a^{10} + \frac{1205934412025192875734041222174408538164537537807021645905078896388403964352404239633813357575400065772201039291128}{5105877969365029395745385465270665036054615795974921360839657866312612596002548648067588160507611654623437400674101} a^{9} + \frac{2078344890636912567155785784970858047192982457144645974295223826222626163252370178685229619336682400778305334454512}{5105877969365029395745385465270665036054615795974921360839657866312612596002548648067588160507611654623437400674101} a^{8} + \frac{2316522117971107612644665202685196932297278345637542481755923039399473630304433397055770713670573881667259612591292}{5105877969365029395745385465270665036054615795974921360839657866312612596002548648067588160507611654623437400674101} a^{7} + \frac{1079191475547479654831043302430077991922475251798931090898676883223980576189611177437351657200030675502197104430549}{5105877969365029395745385465270665036054615795974921360839657866312612596002548648067588160507611654623437400674101} a^{6} - \frac{2517260284040177493003097315745290782499882347733114279360897349758474369374892995492610392264705586103344843662163}{5105877969365029395745385465270665036054615795974921360839657866312612596002548648067588160507611654623437400674101} a^{5} + \frac{2051862540704813027675564968492587249840615970105808910178689865680073560054934516158583397380975292163283163185326}{5105877969365029395745385465270665036054615795974921360839657866312612596002548648067588160507611654623437400674101} a^{4} + \frac{2312942735477347315519304681898556055662893204529760862240635762040306069608882356692233023195791555353940831094322}{5105877969365029395745385465270665036054615795974921360839657866312612596002548648067588160507611654623437400674101} a^{3} + \frac{2327236100432153527595159581578713354527947341641080457433228303376328545334239050226469672747240702102617664762344}{5105877969365029395745385465270665036054615795974921360839657866312612596002548648067588160507611654623437400674101} a^{2} - \frac{716693571496968265660706674230934700815358714514810823491731519350483875904163777784908492819823841164466454298305}{5105877969365029395745385465270665036054615795974921360839657866312612596002548648067588160507611654623437400674101} a - \frac{1136212562919725883796475935850320054351405875382929932304414647844912323835463564772539777604878210954412597828338}{5105877969365029395745385465270665036054615795974921360839657866312612596002548648067588160507611654623437400674101}$
Class group and class number
Not computed
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5:D_4$ (as 20T53):
| A solvable group of order 200 |
| The 65 conjugacy class representatives for $C_5\times C_5:D_4$ are not computed |
| Character table for $C_5\times C_5:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 4.0.1362053.2, 10.0.246071287.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | $20$ | $20$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{10}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $11$ | 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 11.10.9.8 | $x^{10} + 33$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 19 | Data not computed | ||||||