Normalized defining polynomial
\( x^{20} - x^{19} - x^{18} + 6 x^{17} - 5 x^{16} - 5 x^{15} + 17 x^{14} - 9 x^{13} - 10 x^{12} + 24 x^{11} - 13 x^{10} - 9 x^{9} + 30 x^{8} - 26 x^{7} + x^{6} + 25 x^{5} - 16 x^{4} - 4 x^{3} + 11 x^{2} - 4 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(686255883923847255777801=3^{10}\cdot 7^{8}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{4199} a^{18} - \frac{1226}{4199} a^{17} + \frac{1110}{4199} a^{16} + \frac{1523}{4199} a^{15} + \frac{1467}{4199} a^{14} - \frac{531}{4199} a^{13} + \frac{1622}{4199} a^{12} + \frac{1158}{4199} a^{11} + \frac{135}{4199} a^{10} - \frac{426}{4199} a^{9} - \frac{81}{323} a^{8} + \frac{1091}{4199} a^{7} + \frac{150}{4199} a^{6} - \frac{1796}{4199} a^{5} + \frac{92}{247} a^{4} + \frac{610}{4199} a^{3} + \frac{1380}{4199} a^{2} + \frac{87}{4199} a + \frac{973}{4199}$, $\frac{1}{348517} a^{19} - \frac{6}{348517} a^{18} + \frac{9062}{26809} a^{17} - \frac{554}{348517} a^{16} + \frac{41360}{348517} a^{15} + \frac{29828}{348517} a^{14} + \frac{113821}{348517} a^{13} - \frac{27124}{348517} a^{12} - \frac{165929}{348517} a^{11} - \frac{5277}{18343} a^{10} + \frac{20898}{348517} a^{9} - \frac{91053}{348517} a^{8} + \frac{159649}{348517} a^{7} + \frac{139214}{348517} a^{6} - \frac{106852}{348517} a^{5} - \frac{140422}{348517} a^{4} - \frac{157205}{348517} a^{3} + \frac{138455}{348517} a^{2} + \frac{128108}{348517} a - \frac{152421}{348517}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{5818}{18343} a^{19} + \frac{9759}{18343} a^{18} + \frac{7321}{18343} a^{17} - \frac{39226}{18343} a^{16} + \frac{44280}{18343} a^{15} + \frac{34695}{18343} a^{14} - \frac{7034}{1079} a^{13} + \frac{79129}{18343} a^{12} + \frac{80689}{18343} a^{11} - \frac{162356}{18343} a^{10} + \frac{104060}{18343} a^{9} + \frac{68491}{18343} a^{8} - \frac{201595}{18343} a^{7} + \frac{196194}{18343} a^{6} - \frac{8882}{18343} a^{5} - \frac{174412}{18343} a^{4} + \frac{122283}{18343} a^{3} + \frac{56020}{18343} a^{2} - \frac{79743}{18343} a + \frac{29314}{18343} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12584.3597894 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times D_5$ (as 20T8):
| A solvable group of order 40 |
| The 16 conjugacy class representatives for $C_2^2\times D_5$ |
| Character table for $C_2^2\times D_5$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-51}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-3}, \sqrt{17})\), 5.1.14161.1, 10.0.828405627651.1, 10.0.48729742803.1, 10.2.3409076657.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |