Normalized defining polynomial
\( x^{20} + x^{18} - 2 x^{17} + 2 x^{16} + 2 x^{15} + 6 x^{14} + 4 x^{13} + x^{12} - 2 x^{11} + 14 x^{10} + 10 x^{9} + 5 x^{8} - x^{7} + 12 x^{6} + 15 x^{5} - 2 x^{3} + 9 x^{2} + 3 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(686226675232104779996001=3^{10}\cdot 3409004107^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 3409004107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{43} a^{18} - \frac{8}{43} a^{17} + \frac{1}{43} a^{16} - \frac{14}{43} a^{15} + \frac{7}{43} a^{14} - \frac{18}{43} a^{13} + \frac{3}{43} a^{12} + \frac{14}{43} a^{11} - \frac{2}{43} a^{10} + \frac{21}{43} a^{9} + \frac{17}{43} a^{8} - \frac{8}{43} a^{7} + \frac{13}{43} a^{6} + \frac{20}{43} a^{5} + \frac{9}{43} a^{4} - \frac{4}{43} a^{3} + \frac{15}{43} a^{2} + \frac{5}{43} a - \frac{2}{43}$, $\frac{1}{4314196235} a^{19} + \frac{37601584}{4314196235} a^{18} - \frac{18011411}{100330145} a^{17} + \frac{1411074726}{4314196235} a^{16} + \frac{692763341}{4314196235} a^{15} - \frac{421598059}{4314196235} a^{14} + \frac{65824097}{862839247} a^{13} + \frac{372781629}{4314196235} a^{12} - \frac{1507981588}{4314196235} a^{11} + \frac{1911979616}{4314196235} a^{10} - \frac{1107461062}{4314196235} a^{9} - \frac{311428}{4314196235} a^{8} - \frac{2059501027}{4314196235} a^{7} + \frac{688174736}{4314196235} a^{6} + \frac{2023963206}{4314196235} a^{5} + \frac{1697428034}{4314196235} a^{4} + \frac{401517481}{4314196235} a^{3} + \frac{528421777}{4314196235} a^{2} + \frac{1148411797}{4314196235} a - \frac{1187547179}{4314196235}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{24541734}{100330145} a^{19} - \frac{7112019}{100330145} a^{18} + \frac{23751278}{100330145} a^{17} - \frac{49742121}{100330145} a^{16} + \frac{63164259}{100330145} a^{15} + \frac{46501564}{100330145} a^{14} + \frac{23011704}{20066029} a^{13} + \frac{67460481}{100330145} a^{12} - \frac{2653662}{100330145} a^{11} - \frac{2596356}{100330145} a^{10} + \frac{395919927}{100330145} a^{9} + \frac{167309948}{100330145} a^{8} + \frac{15950637}{100330145} a^{7} + \frac{183654}{100330145} a^{6} + \frac{352258539}{100330145} a^{5} + \frac{420426066}{100330145} a^{4} - \frac{109467591}{100330145} a^{3} - \frac{4572677}{100330145} a^{2} + \frac{305907828}{100330145} a + \frac{104460429}{100330145} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9979.28108523 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7257600 |
| The 84 conjugacy class representatives for t20n1021 are not computed |
| Character table for t20n1021 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 10.4.3409004107.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 3409004107 | Data not computed | ||||||