Normalized defining polynomial
\( x^{20} - 3 x^{18} + 54 x^{16} - 167 x^{14} + 1188 x^{12} - 3348 x^{10} + 1282 x^{8} + 13080 x^{6} + 18288 x^{4} - 7695 x^{2} + 729 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6839529046897455541684062388224=2^{20}\cdot 3^{10}\cdot 101^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{9} - \frac{1}{3} a^{5} - \frac{1}{9} a^{3} + \frac{1}{3} a$, $\frac{1}{9} a^{10} + \frac{2}{9} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{11} + \frac{2}{9} a^{5} - \frac{1}{3} a^{3}$, $\frac{1}{9} a^{12} - \frac{1}{9} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3}$, $\frac{1}{27} a^{14} + \frac{1}{27} a^{12} + \frac{1}{27} a^{10} - \frac{4}{27} a^{8} - \frac{1}{27} a^{6} + \frac{8}{27} a^{4} - \frac{2}{9} a^{2}$, $\frac{1}{27} a^{15} + \frac{1}{27} a^{13} + \frac{1}{27} a^{11} - \frac{1}{27} a^{9} - \frac{1}{27} a^{7} - \frac{1}{27} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{135} a^{16} - \frac{2}{135} a^{14} + \frac{4}{135} a^{12} - \frac{7}{135} a^{10} - \frac{16}{135} a^{8} - \frac{13}{135} a^{6} - \frac{1}{45} a^{4} + \frac{4}{15} a^{2} - \frac{1}{5}$, $\frac{1}{405} a^{17} + \frac{1}{135} a^{15} - \frac{2}{135} a^{13} - \frac{2}{405} a^{11} + \frac{1}{45} a^{9} + \frac{14}{135} a^{7} + \frac{37}{405} a^{5} - \frac{28}{135} a^{3} - \frac{2}{5} a$, $\frac{1}{8526197626003665} a^{18} - \frac{863928491908}{315785097259395} a^{16} + \frac{26987669470949}{2842065875334555} a^{14} + \frac{94027521644137}{8526197626003665} a^{12} + \frac{1328056343158}{947355291778185} a^{10} + \frac{416843174875087}{2842065875334555} a^{8} - \frac{800395040488016}{8526197626003665} a^{6} - \frac{2992736723221}{6191864652145} a^{4} - \frac{101372509964539}{947355291778185} a^{2} + \frac{4341766375538}{105261699086465}$, $\frac{1}{25578592878010995} a^{19} - \frac{863928491908}{947355291778185} a^{17} - \frac{966346044636}{105261699086465} a^{15} + \frac{725597716162927}{25578592878010995} a^{13} + \frac{214507567202404}{8526197626003665} a^{11} - \frac{36488440185746}{2842065875334555} a^{9} + \frac{1410100640327749}{25578592878010995} a^{7} + \frac{18265942907353}{501541036823745} a^{5} - \frac{31044607539622}{105261699086465} a^{3} + \frac{4341766375538}{315785097259395} a$
Class group and class number
$C_{14}$, which has order $14$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 44040090.2384 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-303}) \), \(\Q(\sqrt{-101}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{3}, \sqrt{-101})\), 5.1.91809.1 x5, 10.0.2553954421743.1, 10.0.871749775954944.1 x5, 10.2.25893557701632.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $101$ | 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |