Normalized defining polynomial
\( x^{20} + 820 x^{18} + 214225 x^{16} + 24743500 x^{14} + 1372885000 x^{12} + 37375600000 x^{10} + 491561171875 x^{8} + 3135590312500 x^{6} + 9074116796875 x^{4} + 9810210937500 x^{2} + 1329697265625 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(67955065915961530473358856164812748971048960000000000=2^{40}\cdot 3^{10}\cdot 5^{10}\cdot 41^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $438.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4920=2^{3}\cdot 3\cdot 5\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4920}(1,·)$, $\chi_{4920}(4099,·)$, $\chi_{4920}(961,·)$, $\chi_{4920}(269,·)$, $\chi_{4920}(1229,·)$, $\chi_{4920}(4561,·)$, $\chi_{4920}(3911,·)$, $\chi_{4920}(3139,·)$, $\chi_{4920}(3481,·)$, $\chi_{4920}(4459,·)$, $\chi_{4920}(4511,·)$, $\chi_{4920}(4321,·)$, $\chi_{4920}(4699,·)$, $\chi_{4920}(1829,·)$, $\chi_{4920}(551,·)$, $\chi_{4920}(619,·)$, $\chi_{4920}(2669,·)$, $\chi_{4920}(1589,·)$, $\chi_{4920}(4151,·)$, $\chi_{4920}(3071,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{5} a^{2}$, $\frac{1}{5} a^{3}$, $\frac{1}{25} a^{4}$, $\frac{1}{75} a^{5} - \frac{1}{15} a^{3} + \frac{1}{3} a$, $\frac{1}{375} a^{6} - \frac{1}{75} a^{4} + \frac{1}{15} a^{2}$, $\frac{1}{375} a^{7} + \frac{1}{3} a$, $\frac{1}{5625} a^{8} + \frac{1}{75} a^{4} + \frac{4}{45} a^{2}$, $\frac{1}{5625} a^{9} - \frac{2}{45} a^{3} - \frac{1}{3} a$, $\frac{1}{1153125} a^{10} - \frac{4}{225} a^{4} + \frac{1}{15} a^{2}$, $\frac{1}{3459375} a^{11} - \frac{1}{16875} a^{9} + \frac{2}{675} a^{5} + \frac{8}{135} a^{3} - \frac{1}{3} a$, $\frac{1}{17296875} a^{12} + \frac{1}{3459375} a^{10} + \frac{2}{3375} a^{6} + \frac{2}{675} a^{4} + \frac{1}{15} a^{2}$, $\frac{1}{17296875} a^{13} + \frac{1}{16875} a^{9} + \frac{2}{3375} a^{7} + \frac{1}{135} a^{3} + \frac{1}{3} a$, $\frac{1}{86484375} a^{14} - \frac{1}{3459375} a^{10} - \frac{1}{16875} a^{8} - \frac{2}{675} a^{4} + \frac{2}{45} a^{2}$, $\frac{1}{86484375} a^{15} + \frac{1}{16875} a^{9} + \frac{8}{135} a^{3} + \frac{1}{3} a$, $\frac{1}{25773374211328125} a^{16} - \frac{7241731}{1718224947421875} a^{14} + \frac{238576}{68728997896875} a^{12} + \frac{300364}{1649495949525} a^{10} - \frac{19156442}{335263404375} a^{8} - \frac{16663466}{67052680875} a^{6} - \frac{285516097}{40231608525} a^{4} - \frac{68686409}{894035745} a^{2} - \frac{8174539}{19867461}$, $\frac{1}{25773374211328125} a^{17} - \frac{7241731}{1718224947421875} a^{15} + \frac{238576}{68728997896875} a^{13} - \frac{22056883}{206186993690625} a^{11} + \frac{711019}{335263404375} a^{9} - \frac{16663466}{67052680875} a^{7} + \frac{131700584}{40231608525} a^{5} - \frac{820513}{298011915} a^{3} + \frac{1690145}{6622487} a$, $\frac{1}{1141631610690779296875} a^{18} - \frac{127}{45665264427631171875} a^{16} - \frac{1854565829}{608870192368415625} a^{14} - \frac{8269691689}{9133052885526234375} a^{12} + \frac{357231137294}{1826610577105246875} a^{10} - \frac{191697868333}{2970098499358125} a^{8} - \frac{1617346548778}{1782059099614875} a^{6} + \frac{1300967912674}{71282363984595} a^{4} + \frac{198621560791}{7920262664955} a^{2} + \frac{76225351823}{176005836999}$, $\frac{1}{1141631610690779296875} a^{19} - \frac{127}{45665264427631171875} a^{17} - \frac{1854565829}{608870192368415625} a^{15} - \frac{8269691689}{9133052885526234375} a^{13} - \frac{170786373703}{1826610577105246875} a^{11} - \frac{15692031334}{2970098499358125} a^{9} - \frac{1617346548778}{1782059099614875} a^{7} + \frac{696646942403}{356411819922975} a^{5} + \frac{257290173124}{7920262664955} a^{3} + \frac{76225351823}{176005836999} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{397410288}$, which has order $25434258432$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1759608835.9021456 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5 | Data not computed | ||||||
| 41 | Data not computed | ||||||