Normalized defining polynomial
\( x^{20} + 54 x^{18} + 12825 x^{16} + 1231902 x^{14} + 117893880 x^{12} + 7950176568 x^{10} + 418017577635 x^{8} + 16672949786898 x^{6} + 481702575344139 x^{4} + 9481858962789978 x^{2} + 94028983151082849 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(67955065915961530473358856164812748971048960000000000=2^{40}\cdot 3^{10}\cdot 5^{10}\cdot 41^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $438.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4920=2^{3}\cdot 3\cdot 5\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4920}(1,·)$, $\chi_{4920}(3139,·)$, $\chi_{4920}(1349,·)$, $\chi_{4920}(961,·)$, $\chi_{4920}(2189,·)$, $\chi_{4920}(4561,·)$, $\chi_{4920}(4099,·)$, $\chi_{4920}(1991,·)$, $\chi_{4920}(3481,·)$, $\chi_{4920}(4699,·)$, $\chi_{4920}(3551,·)$, $\chi_{4920}(4321,·)$, $\chi_{4920}(619,·)$, $\chi_{4920}(3749,·)$, $\chi_{4920}(4391,·)$, $\chi_{4920}(4459,·)$, $\chi_{4920}(3311,·)$, $\chi_{4920}(2789,·)$, $\chi_{4920}(2951,·)$, $\chi_{4920}(2429,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{9} a^{3} + \frac{1}{3} a$, $\frac{1}{27} a^{4} + \frac{1}{9} a^{2}$, $\frac{1}{27} a^{5} - \frac{1}{3} a$, $\frac{1}{243} a^{6} - \frac{1}{81} a^{4} - \frac{2}{27} a^{2}$, $\frac{1}{243} a^{7} - \frac{1}{81} a^{5} + \frac{1}{27} a^{3} + \frac{1}{3} a$, $\frac{1}{729} a^{8} + \frac{1}{27} a^{2}$, $\frac{1}{6561} a^{9} + \frac{1}{729} a^{7} + \frac{1}{243} a^{5} + \frac{10}{243} a^{3} + \frac{1}{9} a$, $\frac{1}{39366} a^{10} + \frac{1}{4374} a^{8} - \frac{1}{729} a^{6} + \frac{19}{1458} a^{4} + \frac{1}{18} a^{2} - \frac{1}{2}$, $\frac{1}{39366} a^{11} - \frac{1}{13122} a^{9} - \frac{11}{1458} a^{5} + \frac{5}{486} a^{3} - \frac{7}{18} a$, $\frac{1}{354294} a^{12} + \frac{1}{118098} a^{10} + \frac{4}{6561} a^{8} - \frac{23}{13122} a^{6} - \frac{65}{4374} a^{4} + \frac{25}{162} a^{2}$, $\frac{1}{1062882} a^{13} - \frac{1}{177147} a^{11} - \frac{1}{39366} a^{9} - \frac{59}{39366} a^{7} - \frac{88}{6561} a^{5} - \frac{2}{243} a^{3} + \frac{1}{18} a$, $\frac{1}{3188646} a^{14} + \frac{1}{1062882} a^{12} + \frac{13}{118098} a^{8} + \frac{79}{39366} a^{6} - \frac{23}{4374} a^{4} + \frac{11}{81} a^{2}$, $\frac{1}{6377292} a^{15} - \frac{1}{6377292} a^{14} - \frac{1}{2125764} a^{13} + \frac{1}{1062882} a^{12} - \frac{5}{708588} a^{11} - \frac{1}{118098} a^{10} + \frac{5}{118098} a^{9} - \frac{65}{118098} a^{8} - \frac{19}{78732} a^{7} + \frac{17}{19683} a^{6} + \frac{1}{6561} a^{5} + \frac{1}{972} a^{4} - \frac{23}{972} a^{3} + \frac{4}{27} a^{2} - \frac{1}{12} a - \frac{1}{4}$, $\frac{1}{4189880844} a^{16} - \frac{13}{349156737} a^{14} - \frac{1}{2125764} a^{13} + \frac{241}{465542316} a^{12} - \frac{7}{708588} a^{11} - \frac{139}{77590386} a^{10} - \frac{1}{39366} a^{9} + \frac{26561}{51726924} a^{8} - \frac{157}{78732} a^{7} - \frac{905}{4310577} a^{6} + \frac{383}{26244} a^{5} + \frac{7}{53217} a^{4} - \frac{13}{324} a^{3} - \frac{1069}{23652} a^{2} - \frac{1}{18} a + \frac{85}{292}$, $\frac{1}{4189880844} a^{17} - \frac{13}{349156737} a^{15} - \frac{1}{6377292} a^{14} - \frac{197}{465542316} a^{13} - \frac{1}{2125764} a^{12} + \frac{299}{77590386} a^{11} - \frac{3661}{51726924} a^{9} - \frac{13}{236196} a^{8} - \frac{715}{8621154} a^{7} - \frac{79}{78732} a^{6} - \frac{7310}{478953} a^{5} - \frac{139}{8748} a^{4} - \frac{3791}{70956} a^{3} - \frac{10}{81} a^{2} + \frac{401}{876} a$, $\frac{1}{507471299864612090451720605606616396} a^{18} - \frac{962543499189522302464003}{9397616664159483156513344548270674} a^{16} - \frac{535083291247430988500069255}{4698808332079741578256672274135337} a^{14} - \frac{5123162798782954004304192143}{9397616664159483156513344548270674} a^{12} - \frac{1}{78732} a^{11} + \frac{4141926239390350180765844065}{696119752900702456038025522094124} a^{10} - \frac{1}{26244} a^{9} - \frac{24482422426489657278762319279}{348059876450351228019012761047062} a^{8} + \frac{1}{729} a^{7} + \frac{130414929497858506420706083462}{174029938225175614009506380523531} a^{6} - \frac{13}{2916} a^{5} - \frac{38435165892010490383193808457}{6445553267599096815166902982353} a^{4} - \frac{7}{972} a^{3} + \frac{99190114800238893783235754323}{954896780385051380024726367756} a^{2} + \frac{11}{36} a - \frac{260135619307245635514787541}{3929616380185396625616157892}$, $\frac{1}{7905895380590791757147355314745476833284} a^{19} - \frac{4065154827115592881672599905}{146405470010940588095321394717508830246} a^{17} - \frac{4628950299632489622295564175981}{73202735005470294047660697358754415123} a^{15} + \frac{2066320883611675893354565743962}{73202735005470294047660697358754415123} a^{13} - \frac{1}{708588} a^{12} - \frac{56185281202947478791424171080031}{10844849630440043562616399608704357796} a^{11} - \frac{1}{236196} a^{10} + \frac{50389252959518968358719529848}{37139895994657683433617806879124513} a^{9} - \frac{2}{6561} a^{8} - \frac{11103642408515958536001872911307053}{5422424815220021781308199804352178898} a^{7} + \frac{23}{26244} a^{6} - \frac{1119467055663765411269727682098208}{100415274355926329283485181562077387} a^{5} + \frac{65}{8748} a^{4} - \frac{641689794374181668203860290507417}{14876336941618715449405212083270724} a^{3} - \frac{25}{324} a^{2} - \frac{30336764014747138188658499735771}{61219493586908294030474123799468} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{129077776}$, which has order $8260977664$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5866539973.245223 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5 | Data not computed | ||||||
| 41 | Data not computed | ||||||