Normalized defining polynomial
\( x^{20} - 442 x^{18} + 79845 x^{16} - 7498824 x^{14} + 420958530 x^{12} - 14435792364 x^{10} + 296029595250 x^{8} - 3055990120296 x^{6} + 8674595358909 x^{4} + 208980948821846 x^{2} + 1557775043258281 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(67955065915961530473358856164812748971048960000000000=2^{40}\cdot 3^{10}\cdot 5^{10}\cdot 41^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $438.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4920=2^{3}\cdot 3\cdot 5\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4920}(1,·)$, $\chi_{4920}(1091,·)$, $\chi_{4920}(961,·)$, $\chi_{4920}(1931,·)$, $\chi_{4920}(269,·)$, $\chi_{4920}(1229,·)$, $\chi_{4920}(4561,·)$, $\chi_{4920}(851,·)$, $\chi_{4920}(2839,·)$, $\chi_{4920}(3481,·)$, $\chi_{4920}(1759,·)$, $\chi_{4920}(4321,·)$, $\chi_{4920}(4451,·)$, $\chi_{4920}(1829,·)$, $\chi_{4920}(2599,·)$, $\chi_{4920}(491,·)$, $\chi_{4920}(2669,·)$, $\chi_{4920}(1589,·)$, $\chi_{4920}(4159,·)$, $\chi_{4920}(3199,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{12} a^{4} - \frac{1}{6} a^{2} + \frac{1}{12}$, $\frac{1}{12} a^{5} - \frac{1}{6} a^{3} + \frac{1}{12} a$, $\frac{1}{72} a^{6} - \frac{1}{24} a^{4} - \frac{1}{8} a^{2} + \frac{11}{72}$, $\frac{1}{72} a^{7} - \frac{1}{24} a^{5} - \frac{1}{8} a^{3} + \frac{11}{72} a$, $\frac{1}{432} a^{8} + \frac{1}{216} a^{6} + \frac{1}{36} a^{4} - \frac{17}{216} a^{2} + \frac{19}{432}$, $\frac{1}{432} a^{9} + \frac{1}{216} a^{7} + \frac{1}{36} a^{5} - \frac{17}{216} a^{3} + \frac{19}{432} a$, $\frac{1}{864} a^{10} - \frac{1}{864} a^{8} - \frac{1}{144} a^{6} - \frac{17}{432} a^{4} - \frac{203}{864} a^{2} + \frac{9}{32}$, $\frac{1}{1728} a^{11} - \frac{1}{1728} a^{10} - \frac{1}{1728} a^{9} + \frac{1}{1728} a^{8} - \frac{1}{288} a^{7} + \frac{1}{288} a^{6} + \frac{19}{864} a^{5} - \frac{19}{864} a^{4} - \frac{347}{1728} a^{3} + \frac{347}{1728} a^{2} - \frac{61}{192} a + \frac{61}{192}$, $\frac{1}{15552} a^{12} - \frac{1}{5184} a^{8} - \frac{1}{1944} a^{6} - \frac{29}{1728} a^{4} - \frac{13}{648} a^{2} + \frac{5767}{15552}$, $\frac{1}{31104} a^{13} - \frac{1}{31104} a^{12} + \frac{11}{10368} a^{9} - \frac{11}{10368} a^{8} + \frac{1}{486} a^{7} - \frac{1}{486} a^{6} - \frac{125}{3456} a^{5} + \frac{125}{3456} a^{4} + \frac{11}{324} a^{3} - \frac{11}{324} a^{2} + \frac{5155}{31104} a - \frac{5155}{31104}$, $\frac{1}{31104} a^{14} - \frac{1}{31104} a^{12} - \frac{1}{10368} a^{10} - \frac{5}{31104} a^{8} + \frac{179}{31104} a^{6} + \frac{415}{10368} a^{4} - \frac{2993}{31104} a^{2} + \frac{1577}{31104}$, $\frac{1}{62208} a^{15} - \frac{1}{62208} a^{14} - \frac{1}{62208} a^{13} + \frac{1}{62208} a^{12} - \frac{1}{20736} a^{11} + \frac{1}{20736} a^{10} + \frac{67}{62208} a^{9} - \frac{67}{62208} a^{8} - \frac{109}{62208} a^{7} + \frac{109}{62208} a^{6} - \frac{593}{20736} a^{5} + \frac{593}{20736} a^{4} + \frac{8815}{62208} a^{3} - \frac{8815}{62208} a^{2} + \frac{24113}{62208} a - \frac{24113}{62208}$, $\frac{1}{122611968} a^{16} + \frac{281}{61305984} a^{14} + \frac{773}{61305984} a^{12} + \frac{34145}{61305984} a^{10} + \frac{18385}{30652992} a^{8} - \frac{191149}{61305984} a^{6} - \frac{2184277}{61305984} a^{4} + \frac{4467251}{61305984} a^{2} + \frac{16512091}{122611968}$, $\frac{1}{245223936} a^{17} - \frac{1}{245223936} a^{16} + \frac{281}{122611968} a^{15} - \frac{281}{122611968} a^{14} + \frac{773}{122611968} a^{13} - \frac{773}{122611968} a^{12} + \frac{34145}{122611968} a^{11} - \frac{34145}{122611968} a^{10} - \frac{52571}{61305984} a^{9} + \frac{52571}{61305984} a^{8} - \frac{474973}{122611968} a^{7} + \frac{474973}{122611968} a^{6} + \frac{1221611}{122611968} a^{5} - \frac{1221611}{122611968} a^{4} - \frac{925405}{122611968} a^{3} + \frac{925405}{122611968} a^{2} + \frac{21337099}{245223936} a - \frac{21337099}{245223936}$, $\frac{1}{41680783624572037022765621387297742844416} a^{18} - \frac{126564288941572138915546968302393}{41680783624572037022765621387297742844416} a^{16} - \frac{62124853848912802828836358630459633}{5210097953071504627845702673412217855552} a^{14} - \frac{97904001837341972214950233405484971}{5210097953071504627845702673412217855552} a^{12} - \frac{7022932113765937374410884950372607087}{20840391812286018511382810693648871422208} a^{10} + \frac{7550111267103327099251498797976505287}{20840391812286018511382810693648871422208} a^{8} + \frac{11086081286726474500370091314111612665}{2605048976535752313922851336706108927776} a^{6} + \frac{72020024180364049617160491596263265545}{2605048976535752313922851336706108927776} a^{4} + \frac{9024002005579519745078430708814820052949}{41680783624572037022765621387297742844416} a^{2} - \frac{1075328945502581535610526187453730685999}{13893594541524012340921873795765914281472}$, $\frac{1}{3290169271462035500373823094916723087591890316288} a^{19} - \frac{1}{83361567249144074045531242774595485688832} a^{18} - \frac{1849334676441900062291927464267885673933}{3290169271462035500373823094916723087591890316288} a^{17} + \frac{126564288941572138915546968302393}{83361567249144074045531242774595485688832} a^{16} + \frac{4325779869968328666507559946677334131973539}{822542317865508875093455773729180771897972579072} a^{15} - \frac{210761734757903858581377094558281985}{20840391812286018511382810693648871422208} a^{14} - \frac{13116162279136579015928118326087601285966725}{822542317865508875093455773729180771897972579072} a^{13} - \frac{139203438781045519809149345008231309}{20840391812286018511382810693648871422208} a^{12} + \frac{72343630890550622192843221521704520313513571}{1645084635731017750186911547458361543795945158144} a^{11} + \frac{9033000768500314159845183821287814593}{41680783624572037022765621387297742844416} a^{10} - \frac{557461627464376109635280995112769146114937523}{1645084635731017750186911547458361543795945158144} a^{9} + \frac{48061788180547763964430769964010902379}{41680783624572037022765621387297742844416} a^{8} + \frac{4418713365161888901537629544606925995502466035}{822542317865508875093455773729180771897972579072} a^{7} - \frac{50709542553564757822022311681011274429}{20840391812286018511382810693648871422208} a^{6} - \frac{29984442552924430664395210590193877637466655441}{822542317865508875093455773729180771897972579072} a^{5} - \frac{240843483335198344010935942918545685789}{20840391812286018511382810693648871422208} a^{4} - \frac{781099242828992362997187556414950992528849529887}{3290169271462035500373823094916723087591890316288} a^{3} - \frac{7457488500656528770296633788748235003273}{83361567249144074045531242774595485688832} a^{2} - \frac{41998615192446967703145205500913527441974146087}{1096723090487345166791274364972241029197296772096} a + \frac{9723537662016419078453517396295804580147}{27787189083048024681843747591531828562944}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{22}\times C_{960630}$, which has order $1352567040$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 34503946347.31743 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $41$ | 41.10.9.8 | $x^{10} + 318816$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 41.10.9.8 | $x^{10} + 318816$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |