Normalized defining polynomial
\( x^{20} + 328 x^{18} + 32185 x^{16} + 1261816 x^{14} + 19048600 x^{12} + 88124416 x^{10} + 167015755 x^{8} + 149985544 x^{6} + 63170299 x^{4} + 10045656 x^{2} + 136161 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(67955065915961530473358856164812748971048960000000000=2^{40}\cdot 3^{10}\cdot 5^{10}\cdot 41^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $438.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4920=2^{3}\cdot 3\cdot 5\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4920}(1,·)$, $\chi_{4920}(4099,·)$, $\chi_{4920}(961,·)$, $\chi_{4920}(2519,·)$, $\chi_{4920}(4561,·)$, $\chi_{4920}(3139,·)$, $\chi_{4920}(3221,·)$, $\chi_{4920}(1559,·)$, $\chi_{4920}(3481,·)$, $\chi_{4920}(4459,·)$, $\chi_{4920}(4321,·)$, $\chi_{4920}(4699,·)$, $\chi_{4920}(619,·)$, $\chi_{4920}(4781,·)$, $\chi_{4920}(1199,·)$, $\chi_{4920}(119,·)$, $\chi_{4920}(4541,·)$, $\chi_{4920}(959,·)$, $\chi_{4920}(701,·)$, $\chi_{4920}(4181,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} - \frac{1}{3} a$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{2}$, $\frac{1}{9} a^{9} - \frac{1}{9} a^{3}$, $\frac{1}{369} a^{10} - \frac{2}{9} a^{4}$, $\frac{1}{1107} a^{11} + \frac{1}{27} a^{9} - \frac{1}{9} a^{7} + \frac{4}{27} a^{5} + \frac{5}{27} a^{3} + \frac{1}{3} a$, $\frac{1}{1107} a^{12} - \frac{1}{1107} a^{10} + \frac{4}{27} a^{6} + \frac{8}{27} a^{4} + \frac{2}{9} a^{2}$, $\frac{1}{1107} a^{13} + \frac{1}{27} a^{9} + \frac{1}{27} a^{7} + \frac{1}{9} a^{5} + \frac{2}{27} a^{3}$, $\frac{1}{1107} a^{14} - \frac{1}{1107} a^{10} + \frac{1}{27} a^{8} + \frac{1}{9} a^{6} + \frac{5}{27} a^{4}$, $\frac{1}{1107} a^{15} - \frac{1}{27} a^{9} - \frac{1}{27} a^{3}$, $\frac{1}{727299} a^{16} + \frac{103}{242433} a^{14} + \frac{95}{242433} a^{12} - \frac{407}{727299} a^{10} - \frac{278}{5913} a^{8} - \frac{337}{5913} a^{6} + \frac{4502}{17739} a^{4} - \frac{250}{1971} a^{2} + \frac{74}{219}$, $\frac{1}{727299} a^{17} + \frac{103}{242433} a^{15} + \frac{95}{242433} a^{13} + \frac{250}{727299} a^{11} - \frac{59}{5913} a^{9} + \frac{977}{5913} a^{7} + \frac{1217}{17739} a^{5} - \frac{542}{1971} a^{3} + \frac{1}{219} a$, $\frac{1}{5752178129065335499953} a^{18} - \frac{3618005148006637}{5752178129065335499953} a^{16} - \frac{534945256836417770}{1917392709688445166651} a^{14} + \frac{1660824815484221668}{5752178129065335499953} a^{12} + \frac{6818092769275704371}{5752178129065335499953} a^{10} - \frac{700638448418881337}{46765675846059638211} a^{8} - \frac{10383503412337822723}{140297027538178914633} a^{6} - \frac{347867359208496167}{1921877089564094721} a^{4} + \frac{7118216030273115877}{15588558615353212737} a^{2} - \frac{706316883651633050}{1732062068372579193}$, $\frac{1}{5752178129065335499953} a^{19} - \frac{3618005148006637}{5752178129065335499953} a^{17} - \frac{534945256836417770}{1917392709688445166651} a^{15} + \frac{1660824815484221668}{5752178129065335499953} a^{13} + \frac{1621906564157966792}{5752178129065335499953} a^{11} - \frac{2432700516791460530}{46765675846059638211} a^{9} + \frac{5205055203015390014}{140297027538178914633} a^{7} + \frac{8035805525595448}{1921877089564094721} a^{5} - \frac{6160926493916657936}{15588558615353212737} a^{3} - \frac{706316883651633050}{1732062068372579193} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{10431384}$, which has order $1335217152$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 41502978620.14737 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $5$ | 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 41 | Data not computed | ||||||