Properties

Label 20.0.67729133686...9952.3
Degree $20$
Signature $[0, 10]$
Discriminant $2^{20}\cdot 11^{16}\cdot 14057$
Root discriminant $21.96$
Ramified primes $2, 11, 14057$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T749

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![11, -88, 363, -968, 1837, -2806, 3902, -5142, 6383, -7170, 6770, -5318, 3666, -2280, 1303, -676, 317, -124, 38, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 8*x^19 + 38*x^18 - 124*x^17 + 317*x^16 - 676*x^15 + 1303*x^14 - 2280*x^13 + 3666*x^12 - 5318*x^11 + 6770*x^10 - 7170*x^9 + 6383*x^8 - 5142*x^7 + 3902*x^6 - 2806*x^5 + 1837*x^4 - 968*x^3 + 363*x^2 - 88*x + 11)
 
gp: K = bnfinit(x^20 - 8*x^19 + 38*x^18 - 124*x^17 + 317*x^16 - 676*x^15 + 1303*x^14 - 2280*x^13 + 3666*x^12 - 5318*x^11 + 6770*x^10 - 7170*x^9 + 6383*x^8 - 5142*x^7 + 3902*x^6 - 2806*x^5 + 1837*x^4 - 968*x^3 + 363*x^2 - 88*x + 11, 1)
 

Normalized defining polynomial

\( x^{20} - 8 x^{19} + 38 x^{18} - 124 x^{17} + 317 x^{16} - 676 x^{15} + 1303 x^{14} - 2280 x^{13} + 3666 x^{12} - 5318 x^{11} + 6770 x^{10} - 7170 x^{9} + 6383 x^{8} - 5142 x^{7} + 3902 x^{6} - 2806 x^{5} + 1837 x^{4} - 968 x^{3} + 363 x^{2} - 88 x + 11 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(677291336864611819508989952=2^{20}\cdot 11^{16}\cdot 14057\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $21.96$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 14057$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{3569915033624217035356721} a^{19} - \frac{217936054270129152205680}{3569915033624217035356721} a^{18} + \frac{58916228608982516384102}{3569915033624217035356721} a^{17} + \frac{352280229633700426253056}{3569915033624217035356721} a^{16} + \frac{654157553341477186573236}{3569915033624217035356721} a^{15} - \frac{484898213110639181325291}{3569915033624217035356721} a^{14} - \frac{871454791014923792906019}{3569915033624217035356721} a^{13} - \frac{365815276058453648292205}{3569915033624217035356721} a^{12} - \frac{1435126819018116480326114}{3569915033624217035356721} a^{11} - \frac{1672193138561006885285041}{3569915033624217035356721} a^{10} + \frac{305233529619980984911980}{3569915033624217035356721} a^{9} + \frac{1666493942460290575263468}{3569915033624217035356721} a^{8} - \frac{1494789625968010676161221}{3569915033624217035356721} a^{7} - \frac{201925036527431270385472}{3569915033624217035356721} a^{6} - \frac{1368607260006737674453696}{3569915033624217035356721} a^{5} + \frac{252679550004388046763049}{3569915033624217035356721} a^{4} - \frac{1288032354017000420517854}{3569915033624217035356721} a^{3} - \frac{414160899529184268085145}{3569915033624217035356721} a^{2} + \frac{1500871627790486188608846}{3569915033624217035356721} a - \frac{1068573601303586269789373}{3569915033624217035356721}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 122530.315198 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T749:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 81920
The 332 conjugacy class representatives for t20n749 are not computed
Character table for t20n749 is not computed

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.6.219503494144.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$11$11.5.4.4$x^{5} - 11$$5$$1$$4$$C_5$$[\ ]_{5}$
11.5.4.4$x^{5} - 11$$5$$1$$4$$C_5$$[\ ]_{5}$
11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
14057Data not computed