Properties

Label 20.0.67400998941...4497.1
Degree $20$
Signature $[0, 10]$
Discriminant $7^{8}\cdot 11^{2}\cdot 17^{10}\cdot 4793$
Root discriminant $17.44$
Ramified primes $7, 11, 17, 4793$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T525

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 2, 6, 5, 25, 20, 24, 51, 54, -25, 154, -88, 102, 7, -13, 35, -2, -4, 9, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 3*x^19 + 9*x^18 - 4*x^17 - 2*x^16 + 35*x^15 - 13*x^14 + 7*x^13 + 102*x^12 - 88*x^11 + 154*x^10 - 25*x^9 + 54*x^8 + 51*x^7 + 24*x^6 + 20*x^5 + 25*x^4 + 5*x^3 + 6*x^2 + 2*x + 1)
 
gp: K = bnfinit(x^20 - 3*x^19 + 9*x^18 - 4*x^17 - 2*x^16 + 35*x^15 - 13*x^14 + 7*x^13 + 102*x^12 - 88*x^11 + 154*x^10 - 25*x^9 + 54*x^8 + 51*x^7 + 24*x^6 + 20*x^5 + 25*x^4 + 5*x^3 + 6*x^2 + 2*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 3 x^{19} + 9 x^{18} - 4 x^{17} - 2 x^{16} + 35 x^{15} - 13 x^{14} + 7 x^{13} + 102 x^{12} - 88 x^{11} + 154 x^{10} - 25 x^{9} + 54 x^{8} + 51 x^{7} + 24 x^{6} + 20 x^{5} + 25 x^{4} + 5 x^{3} + 6 x^{2} + 2 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(6740099894143626268524497=7^{8}\cdot 11^{2}\cdot 17^{10}\cdot 4793\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $17.44$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 11, 17, 4793$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{7} a^{16} - \frac{3}{7} a^{15} + \frac{1}{7} a^{14} - \frac{1}{7} a^{13} + \frac{2}{7} a^{12} - \frac{3}{7} a^{10} + \frac{2}{7} a^{9} + \frac{3}{7} a^{8} + \frac{1}{7} a^{7} + \frac{3}{7} a^{6} - \frac{2}{7} a^{5} + \frac{3}{7} a^{4} + \frac{2}{7} a^{3} + \frac{1}{7} a^{2} + \frac{1}{7} a - \frac{3}{7}$, $\frac{1}{7} a^{17} - \frac{1}{7} a^{15} + \frac{2}{7} a^{14} - \frac{1}{7} a^{13} - \frac{1}{7} a^{12} - \frac{3}{7} a^{11} + \frac{2}{7} a^{9} + \frac{3}{7} a^{8} - \frac{1}{7} a^{7} - \frac{3}{7} a^{5} - \frac{3}{7} a^{4} - \frac{3}{7} a^{2} - \frac{2}{7}$, $\frac{1}{133} a^{18} - \frac{3}{133} a^{17} - \frac{9}{133} a^{16} + \frac{50}{133} a^{15} + \frac{27}{133} a^{14} + \frac{66}{133} a^{13} + \frac{33}{133} a^{12} + \frac{16}{133} a^{11} + \frac{40}{133} a^{10} + \frac{23}{133} a^{9} - \frac{34}{133} a^{8} - \frac{40}{133} a^{7} + \frac{1}{133} a^{6} - \frac{27}{133} a^{5} + \frac{6}{133} a^{4} - \frac{26}{133} a^{3} + \frac{50}{133} a^{2} - \frac{59}{133} a + \frac{37}{133}$, $\frac{1}{9957311} a^{19} + \frac{3293}{9957311} a^{18} + \frac{447224}{9957311} a^{17} + \frac{41915}{1422473} a^{16} - \frac{266548}{1422473} a^{15} + \frac{4122245}{9957311} a^{14} + \frac{156640}{524069} a^{13} + \frac{274160}{9957311} a^{12} - \frac{237829}{9957311} a^{11} - \frac{176716}{9957311} a^{10} - \frac{223247}{1422473} a^{9} - \frac{354411}{9957311} a^{8} - \frac{3507550}{9957311} a^{7} + \frac{1874199}{9957311} a^{6} + \frac{1955433}{9957311} a^{5} + \frac{267357}{765947} a^{4} + \frac{707835}{1422473} a^{3} - \frac{195199}{1422473} a^{2} + \frac{86323}{524069} a - \frac{207484}{1422473}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 13469.9586903 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T525:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 20480
The 152 conjugacy class representatives for t20n525 are not computed
Character table for t20n525 is not computed

Intermediate fields

\(\Q(\sqrt{17}) \), 5.1.14161.1, 10.2.3409076657.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ $20$ $20$ R R ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$7$7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.0.1$x^{4} + x^{2} - 3 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$11$11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
11.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
11.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$17$17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
4793Data not computed