Normalized defining polynomial
\( x^{20} - 12 x^{18} + 63 x^{16} - 112 x^{14} - 421 x^{12} + 2540 x^{10} - 2335 x^{8} - 8880 x^{6} + 20004 x^{4} - 10912 x^{2} + 3200 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(670293709640099417352021424996352=2^{33}\cdot 727^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 727$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{2} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{12} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{3}{8} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{13} + \frac{3}{8} a^{5} - \frac{1}{2} a$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{6}$, $\frac{1}{80} a^{15} - \frac{1}{16} a^{14} + \frac{1}{40} a^{13} - \frac{1}{10} a^{11} + \frac{1}{10} a^{9} - \frac{1}{4} a^{8} - \frac{17}{80} a^{7} - \frac{3}{16} a^{6} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{1}{10} a^{3} - \frac{1}{4} a^{2} + \frac{2}{5} a$, $\frac{1}{80} a^{16} - \frac{3}{80} a^{14} + \frac{1}{40} a^{12} + \frac{1}{10} a^{10} - \frac{17}{80} a^{8} - \frac{1}{16} a^{6} - \frac{1}{2} a^{5} - \frac{1}{40} a^{4} + \frac{2}{5} a^{2} - \frac{1}{2} a$, $\frac{1}{160} a^{17} - \frac{1}{160} a^{15} - \frac{1}{40} a^{13} + \frac{3}{40} a^{11} - \frac{1}{160} a^{9} + \frac{1}{160} a^{7} + \frac{17}{40} a^{5} - \frac{3}{40} a^{3} + \frac{2}{5} a$, $\frac{1}{76560059004800} a^{18} + \frac{5582363607}{15312011800960} a^{16} - \frac{1083664780773}{19140014751200} a^{14} + \frac{709235342941}{19140014751200} a^{12} - \frac{1}{8} a^{11} + \frac{4605818895687}{76560059004800} a^{10} - \frac{1}{8} a^{9} + \frac{5323392635429}{76560059004800} a^{8} + \frac{1}{8} a^{7} - \frac{1802356323193}{19140014751200} a^{6} - \frac{1}{8} a^{5} - \frac{1039713771313}{2734287821600} a^{4} + \frac{1}{4} a^{3} + \frac{651291550003}{2392501843900} a^{2} + \frac{780705036}{23925018439}$, $\frac{1}{76560059004800} a^{19} + \frac{5582363607}{15312011800960} a^{17} + \frac{112586141177}{19140014751200} a^{15} - \frac{1}{16} a^{14} + \frac{709235342941}{19140014751200} a^{13} + \frac{4605818895687}{76560059004800} a^{11} - \frac{1}{8} a^{10} + \frac{5323392635429}{76560059004800} a^{9} + \frac{1}{8} a^{8} - \frac{2998607245143}{19140014751200} a^{7} - \frac{1}{16} a^{6} - \frac{1039713771313}{2734287821600} a^{5} + \frac{1}{8} a^{4} + \frac{651291550003}{2392501843900} a^{3} + \frac{780705036}{23925018439} a$
Class group and class number
$C_{11}$, which has order $11$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{252781}{2481687488} a^{18} + \frac{3705333}{2481687488} a^{16} - \frac{682615}{77552734} a^{14} + \frac{12322587}{620421872} a^{12} + \frac{123579525}{2481687488} a^{10} - \frac{1001121629}{2481687488} a^{8} + \frac{173213157}{310210936} a^{6} + \frac{135156029}{88631696} a^{4} - \frac{586744371}{155105468} a^{2} + \frac{48573319}{38776367} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2087758442.52 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20480 |
| The 152 conjugacy class representatives for t20n525 are not computed |
| Character table for t20n525 is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 5.5.8456464.1, 10.0.286047133533184.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{6}$ | $20$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.4.9.1 | $x^{4} + 6 x^{2} + 2$ | $4$ | $1$ | $9$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 727 | Data not computed | ||||||