Normalized defining polynomial
\( x^{20} - 3 x^{19} + 11 x^{18} - 16 x^{17} + 42 x^{16} - 48 x^{15} + 105 x^{14} - 29 x^{13} + 42 x^{12} + 141 x^{11} + 72 x^{10} + 27 x^{9} + 280 x^{8} - 69 x^{7} + 522 x^{6} - 385 x^{5} + 519 x^{4} - 79 x^{3} + 70 x^{2} - 3 x + 9 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6671972272300106674226558481=3^{10}\cdot 13^{2}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{83} a^{17} + \frac{2}{83} a^{16} - \frac{33}{83} a^{15} - \frac{14}{83} a^{14} - \frac{20}{83} a^{13} - \frac{1}{83} a^{12} - \frac{14}{83} a^{11} + \frac{16}{83} a^{10} + \frac{22}{83} a^{9} + \frac{19}{83} a^{8} - \frac{24}{83} a^{7} + \frac{34}{83} a^{6} - \frac{1}{83} a^{5} + \frac{39}{83} a^{4} - \frac{5}{83} a^{3} + \frac{31}{83} a^{2} - \frac{34}{83} a + \frac{22}{83}$, $\frac{1}{83} a^{18} - \frac{37}{83} a^{16} - \frac{31}{83} a^{15} + \frac{8}{83} a^{14} + \frac{39}{83} a^{13} - \frac{12}{83} a^{12} - \frac{39}{83} a^{11} - \frac{10}{83} a^{10} - \frac{25}{83} a^{9} + \frac{21}{83} a^{8} - \frac{1}{83} a^{7} + \frac{14}{83} a^{6} + \frac{41}{83} a^{5} + \frac{41}{83} a^{3} - \frac{13}{83} a^{2} + \frac{7}{83} a + \frac{39}{83}$, $\frac{1}{1010219511430180599} a^{19} + \frac{335611869792415}{336739837143393533} a^{18} - \frac{845732865089077}{1010219511430180599} a^{17} + \frac{111293397816760910}{1010219511430180599} a^{16} + \frac{45675112059638270}{336739837143393533} a^{15} - \frac{165936187273187234}{336739837143393533} a^{14} + \frac{10768866625245915}{336739837143393533} a^{13} - \frac{297698822181952763}{1010219511430180599} a^{12} + \frac{80953167209270779}{336739837143393533} a^{11} - \frac{2256197804233658}{336739837143393533} a^{10} - \frac{1819196180242781}{336739837143393533} a^{9} + \frac{99597604785818712}{336739837143393533} a^{8} + \frac{207303094103687359}{1010219511430180599} a^{7} + \frac{80773525841433780}{336739837143393533} a^{6} - \frac{58694924974909483}{336739837143393533} a^{5} + \frac{319048679314378088}{1010219511430180599} a^{4} + \frac{102560379743154781}{336739837143393533} a^{3} - \frac{324427952273436202}{1010219511430180599} a^{2} + \frac{2433997495911670}{1010219511430180599} a - \frac{141638846595072323}{336739837143393533}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2512377809661056}{1010219511430180599} a^{19} + \frac{2038987998243536}{336739837143393533} a^{18} - \frac{13351220705202509}{1010219511430180599} a^{17} + \frac{113055451409372800}{1010219511430180599} a^{16} - \frac{38365841749934421}{336739837143393533} a^{15} + \frac{156860439698150215}{336739837143393533} a^{14} - \frac{126832496346244627}{336739837143393533} a^{13} + \frac{1431665706398973335}{1010219511430180599} a^{12} - \frac{76317893110289970}{336739837143393533} a^{11} + \frac{364373769729570627}{336739837143393533} a^{10} + \frac{825856762010777361}{336739837143393533} a^{9} + \frac{449718343255021219}{336739837143393533} a^{8} + \frac{1550518355873677352}{1010219511430180599} a^{7} + \frac{1488968438310308590}{336739837143393533} a^{6} + \frac{395685455516436049}{336739837143393533} a^{5} + \frac{6564907402591659715}{1010219511430180599} a^{4} - \frac{1152774864943253612}{336739837143393533} a^{3} + \frac{7883838087950646562}{1010219511430180599} a^{2} - \frac{410061779212973272}{1010219511430180599} a + \frac{367932817956517545}{336739837143393533} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 553903.652517 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 640 |
| The 40 conjugacy class representatives for t20n141 |
| Character table for t20n141 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 5.5.160801.1, 10.6.336140500813.1, 10.4.81682141697559.1, 10.0.6283241669043.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 401 | Data not computed | ||||||