Normalized defining polynomial
\( x^{20} - 2 x^{19} - 57 x^{18} + 118 x^{17} + 2077 x^{16} - 3198 x^{15} - 18998 x^{14} - 64298 x^{13} + 509781 x^{12} + 299032 x^{11} + 8761372 x^{10} - 22197228 x^{9} + 53569228 x^{8} - 217328252 x^{7} + 1831089339 x^{6} + 1840387582 x^{5} + 25772416231 x^{4} + 24488206434 x^{3} + 134963891166 x^{2} + 66897276912 x + 246562051689 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(66362369058556182102889507973449950167040000000000=2^{30}\cdot 3^{10}\cdot 5^{10}\cdot 41^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $309.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4920=2^{3}\cdot 3\cdot 5\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4920}(1,·)$, $\chi_{4920}(961,·)$, $\chi_{4920}(269,·)$, $\chi_{4920}(461,·)$, $\chi_{4920}(4369,·)$, $\chi_{4920}(4301,·)$, $\chi_{4920}(409,·)$, $\chi_{4920}(3481,·)$, $\chi_{4920}(221,·)$, $\chi_{4920}(2669,·)$, $\chi_{4920}(4321,·)$, $\chi_{4920}(1829,·)$, $\chi_{4920}(4561,·)$, $\chi_{4920}(1589,·)$, $\chi_{4920}(1009,·)$, $\chi_{4920}(1229,·)$, $\chi_{4920}(821,·)$, $\chi_{4920}(1849,·)$, $\chi_{4920}(769,·)$, $\chi_{4920}(1781,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{9} - \frac{1}{3} a^{5} - \frac{1}{9} a^{3} + \frac{1}{3} a$, $\frac{1}{9} a^{10} + \frac{2}{9} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{11} + \frac{2}{9} a^{5} - \frac{1}{3} a^{3}$, $\frac{1}{27} a^{12} - \frac{1}{27} a^{10} - \frac{1}{9} a^{8} - \frac{1}{27} a^{6} + \frac{1}{27} a^{4} + \frac{1}{9} a^{2} + \frac{1}{3}$, $\frac{1}{27} a^{13} - \frac{1}{27} a^{11} - \frac{1}{27} a^{7} - \frac{8}{27} a^{5} - \frac{1}{3} a$, $\frac{1}{81} a^{14} - \frac{1}{81} a^{13} - \frac{2}{81} a^{11} - \frac{4}{81} a^{10} - \frac{1}{27} a^{9} - \frac{4}{81} a^{8} - \frac{8}{81} a^{7} + \frac{2}{81} a^{5} + \frac{31}{81} a^{4} - \frac{8}{27} a^{3} - \frac{5}{27} a^{2} + \frac{1}{9}$, $\frac{1}{81} a^{15} - \frac{1}{81} a^{13} + \frac{1}{81} a^{12} + \frac{1}{27} a^{11} - \frac{1}{81} a^{10} + \frac{2}{81} a^{9} + \frac{2}{27} a^{8} - \frac{8}{81} a^{7} - \frac{1}{81} a^{6} + \frac{8}{27} a^{5} + \frac{28}{81} a^{4} + \frac{2}{27} a^{3} + \frac{7}{27} a^{2} + \frac{4}{9} a + \frac{4}{9}$, $\frac{1}{243} a^{16} + \frac{1}{81} a^{13} - \frac{2}{81} a^{11} + \frac{10}{243} a^{10} + \frac{4}{81} a^{9} - \frac{1}{81} a^{8} - \frac{4}{81} a^{7} - \frac{1}{9} a^{6} + \frac{20}{81} a^{5} - \frac{83}{243} a^{4} + \frac{23}{81} a^{3} - \frac{23}{81} a^{2} + \frac{4}{27} a - \frac{11}{27}$, $\frac{1}{729} a^{17} + \frac{1}{729} a^{16} - \frac{1}{243} a^{15} - \frac{1}{81} a^{12} - \frac{17}{729} a^{11} + \frac{37}{729} a^{10} + \frac{4}{243} a^{9} + \frac{20}{243} a^{8} - \frac{7}{81} a^{7} + \frac{4}{81} a^{6} - \frac{164}{729} a^{5} + \frac{52}{729} a^{4} + \frac{11}{27} a^{3} - \frac{44}{243} a^{2} + \frac{17}{81} a + \frac{28}{81}$, $\frac{1}{6974343} a^{18} + \frac{1199}{6974343} a^{17} - \frac{4127}{6974343} a^{16} - \frac{14014}{2324781} a^{15} + \frac{2179}{774927} a^{14} - \frac{29}{3189} a^{13} + \frac{81190}{6974343} a^{12} - \frac{338308}{6974343} a^{11} + \frac{173521}{6974343} a^{10} - \frac{27665}{774927} a^{9} + \frac{68912}{2324781} a^{8} - \frac{93925}{774927} a^{7} + \frac{1146130}{6974343} a^{6} + \frac{2462216}{6974343} a^{5} + \frac{1578469}{6974343} a^{4} + \frac{34501}{2324781} a^{3} + \frac{616504}{2324781} a^{2} + \frac{73736}{258309} a + \frac{235195}{774927}$, $\frac{1}{118909700362265111109473956048279214801820547726230994111744312819715450283} a^{19} + \frac{2379582073433408237750251854685883184600762971765467536302379461341}{39636566787421703703157985349426404933940182575410331370581437606571816761} a^{18} + \frac{8158798806467551706626430232521734178504033508089079221171971505553014}{39636566787421703703157985349426404933940182575410331370581437606571816761} a^{17} - \frac{94802683704669475457372999970504958424189633950214357239001589117315470}{118909700362265111109473956048279214801820547726230994111744312819715450283} a^{16} + \frac{28918387410711564784866983558425680858182386443086001172129155393989351}{39636566787421703703157985349426404933940182575410331370581437606571816761} a^{15} - \frac{11898406887919989707479653958198344321712476875904357265621591560156851}{13212188929140567901052661783142134977980060858470110456860479202190605587} a^{14} - \frac{69776772946452083495559012579057807101882463115417849281915328054726439}{118909700362265111109473956048279214801820547726230994111744312819715450283} a^{13} - \frac{719826975060794134728262158598483128999629201132883300147431071126009883}{39636566787421703703157985349426404933940182575410331370581437606571816761} a^{12} + \frac{1900847250117471770954898853088306555128114419449793953889095860529312194}{39636566787421703703157985349426404933940182575410331370581437606571816761} a^{11} + \frac{1679005029854478403043806279767322252635135406832000653355970077074287748}{118909700362265111109473956048279214801820547726230994111744312819715450283} a^{10} + \frac{986128868593149433844251069111388946821187164814585693509694810990149006}{39636566787421703703157985349426404933940182575410331370581437606571816761} a^{9} - \frac{6252835682573138167374965061894666143753084638302416837304225906000716200}{39636566787421703703157985349426404933940182575410331370581437606571816761} a^{8} - \frac{9485668152567969406891252587757402777264917524662846019349682919283093320}{118909700362265111109473956048279214801820547726230994111744312819715450283} a^{7} - \frac{4244813882744338009587124584458403593175052728774600353661380012563324808}{39636566787421703703157985349426404933940182575410331370581437606571816761} a^{6} - \frac{1291792754693797263170099519492547801883449161611487789187979550691498752}{13212188929140567901052661783142134977980060858470110456860479202190605587} a^{5} - \frac{9390526951818721038379553122151491546750002744507718009177758579916879526}{118909700362265111109473956048279214801820547726230994111744312819715450283} a^{4} + \frac{1966517648816295718414225666361567303965347855053219827605679558725639260}{39636566787421703703157985349426404933940182575410331370581437606571816761} a^{3} - \frac{1211383670352345311412976403390202296540603215615679816863871757981547796}{39636566787421703703157985349426404933940182575410331370581437606571816761} a^{2} + \frac{4917068757256719913359106619029675692801112954001319818546028892020822286}{13212188929140567901052661783142134977980060858470110456860479202190605587} a - \frac{4442944962074649603752673153653975876068489401385771084313748064662061355}{13212188929140567901052661783142134977980060858470110456860479202190605587}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{290532}$, which has order $297504768$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3541438824.6395073 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 41 | Data not computed | ||||||