Normalized defining polynomial
\( x^{20} + 106 x^{18} + 4720 x^{16} + 233896 x^{14} + 13285840 x^{12} + 249048352 x^{10} + 5045005888 x^{8} + 96595229824 x^{6} + 1597110191104 x^{4} + 17217802752 x^{2} + 559121089536 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(66362369058556182102889507973449950167040000000000=2^{30}\cdot 3^{10}\cdot 5^{10}\cdot 41^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $309.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4920=2^{3}\cdot 3\cdot 5\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4920}(1,·)$, $\chi_{4920}(4699,·)$, $\chi_{4920}(2051,·)$, $\chi_{4920}(961,·)$, $\chi_{4920}(4049,·)$, $\chi_{4920}(4561,·)$, $\chi_{4920}(3139,·)$, $\chi_{4920}(3481,·)$, $\chi_{4920}(4459,·)$, $\chi_{4920}(4099,·)$, $\chi_{4920}(4321,·)$, $\chi_{4920}(611,·)$, $\chi_{4920}(1691,·)$, $\chi_{4920}(209,·)$, $\chi_{4920}(2729,·)$, $\chi_{4920}(4289,·)$, $\chi_{4920}(619,·)$, $\chi_{4920}(3689,·)$, $\chi_{4920}(1451,·)$, $\chi_{4920}(3011,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{24} a^{6} - \frac{1}{12} a^{4} + \frac{1}{6} a^{2}$, $\frac{1}{24} a^{7} - \frac{1}{12} a^{5} + \frac{1}{6} a^{3}$, $\frac{1}{48} a^{8} + \frac{1}{6} a^{2}$, $\frac{1}{144} a^{9} - \frac{1}{12} a^{5} + \frac{2}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{288} a^{10} + \frac{1}{36} a^{4}$, $\frac{1}{288} a^{11} + \frac{1}{36} a^{5}$, $\frac{1}{576} a^{12} + \frac{1}{72} a^{6}$, $\frac{1}{576} a^{13} + \frac{1}{72} a^{7}$, $\frac{1}{3456} a^{14} - \frac{1}{1728} a^{12} + \frac{1}{864} a^{10} + \frac{1}{108} a^{8} - \frac{1}{216} a^{6} + \frac{5}{54} a^{4} - \frac{1}{9} a^{2} + \frac{1}{3}$, $\frac{1}{3456} a^{15} - \frac{1}{1728} a^{13} + \frac{1}{864} a^{11} + \frac{1}{432} a^{9} - \frac{1}{216} a^{7} - \frac{2}{27} a^{5} + \frac{1}{6} a^{3} - \frac{1}{3} a$, $\frac{1}{20736} a^{16} + \frac{1}{1728} a^{12} - \frac{1}{2592} a^{10} + \frac{1}{108} a^{8} + \frac{1}{54} a^{6} - \frac{1}{162} a^{4} + \frac{2}{27} a^{2} + \frac{1}{9}$, $\frac{1}{161512704} a^{17} + \frac{37}{2243232} a^{15} - \frac{731}{3364848} a^{13} + \frac{26009}{20189088} a^{11} + \frac{1141}{3364848} a^{9} + \frac{21487}{1682424} a^{7} + \frac{298573}{2523636} a^{5} - \frac{7630}{210303} a^{3} + \frac{13024}{70101} a$, $\frac{1}{1483791102355389860482096296073415624350161408} a^{18} + \frac{2878896007206903393160834220050734185035}{185473887794423732560262037009176953043770176} a^{16} + \frac{6977143680619353673382918463618195492595}{123649258529615821706841358006117968695846784} a^{14} - \frac{29266046542064135255480387824360545132163}{185473887794423732560262037009176953043770176} a^{12} - \frac{8518103588348594955283947486839443183603}{92736943897211866280131018504588476521885088} a^{10} + \frac{75215231892077428131570565824233727952015}{7728078658100988856677584875382373043490424} a^{8} - \frac{93717939750771491410841734928492274063767}{23184235974302966570032754626147119130471272} a^{6} + \frac{1375647597884828516171589030059708677096}{2898029496787870821254094328268389891308909} a^{4} + \frac{180568233723412173576540258388671569006701}{1932019664525247214169396218845593260872606} a^{2} - \frac{8374248347361999127148509813135080239}{41340772553713510809461980974142878009}$, $\frac{1}{1483791102355389860482096296073415624350161408} a^{19} - \frac{117836967916605059017153372196056367}{741895551177694930241048148036707812175080704} a^{17} + \frac{5139906032871899851802746138498471595657}{61824629264807910853420679003058984347923392} a^{15} - \frac{7611982065659723041933234143405007117553}{92736943897211866280131018504588476521885088} a^{13} + \frac{78654460981470783285268413764776502797249}{46368471948605933140065509252294238260942544} a^{11} - \frac{37297984382258196322625723955115353134839}{15456157316201977713355169750764746086980848} a^{9} - \frac{41243514936839660487135615048591729435661}{11592117987151483285016377313073559565235636} a^{7} - \frac{7122177871489615372440040392402994024754}{2898029496787870821254094328268389891308909} a^{5} + \frac{101861829886332187232186676199372131616871}{966009832262623607084698109422796630436303} a^{3} + \frac{7799157628945988226287654124037912750327}{322003277420874535694899369807598876812101} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4240400}$, which has order $135692800$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9452086796.91891 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-615}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-410}) \), \(\Q(\sqrt{6}, \sqrt{-410})\), 5.5.2825761.1, 10.0.248605656430414134375.1, 10.10.63580957267604373504.1, 10.0.33523910081941606400000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.15.13 | $x^{10} - 2 x^{8} - 4 x^{6} - 48 x^{2} - 96$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ |
| 2.10.15.13 | $x^{10} - 2 x^{8} - 4 x^{6} - 48 x^{2} - 96$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ | |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $5$ | 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 41 | Data not computed | ||||||