Normalized defining polynomial
\( x^{20} - x^{19} + 76 x^{18} - 63 x^{17} + 2419 x^{16} - 1600 x^{15} + 41961 x^{14} - 21161 x^{13} + 433108 x^{12} - 158015 x^{11} + 2727803 x^{10} - 642587 x^{9} + 10282204 x^{8} - 563649 x^{7} + 21527189 x^{6} + 7639032 x^{5} + 21771895 x^{4} + 31792177 x^{3} + 2367428 x^{2} + 21109951 x + 74991181 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(661866033279225680306281949177084481=3^{10}\cdot 11^{18}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(561=3\cdot 11\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{561}(256,·)$, $\chi_{561}(1,·)$, $\chi_{561}(392,·)$, $\chi_{561}(203,·)$, $\chi_{561}(460,·)$, $\chi_{561}(271,·)$, $\chi_{561}(152,·)$, $\chi_{561}(475,·)$, $\chi_{561}(545,·)$, $\chi_{561}(35,·)$, $\chi_{561}(356,·)$, $\chi_{561}(103,·)$, $\chi_{561}(424,·)$, $\chi_{561}(494,·)$, $\chi_{561}(239,·)$, $\chi_{561}(373,·)$, $\chi_{561}(118,·)$, $\chi_{561}(509,·)$, $\chi_{561}(254,·)$, $\chi_{561}(511,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{7589} a^{11} + \frac{44}{7589} a^{9} + \frac{704}{7589} a^{7} - \frac{2661}{7589} a^{5} - \frac{1098}{7589} a^{3} + \frac{3675}{7589} a - \frac{3462}{7589}$, $\frac{1}{7589} a^{12} + \frac{44}{7589} a^{10} + \frac{704}{7589} a^{8} - \frac{2661}{7589} a^{6} - \frac{1098}{7589} a^{4} + \frac{3675}{7589} a^{2} - \frac{3462}{7589} a$, $\frac{1}{7589} a^{13} - \frac{1232}{7589} a^{9} - \frac{3281}{7589} a^{7} + \frac{2151}{7589} a^{5} - \frac{1136}{7589} a^{3} - \frac{3462}{7589} a^{2} - \frac{2331}{7589} a + \frac{548}{7589}$, $\frac{1}{7589} a^{14} - \frac{1232}{7589} a^{10} - \frac{3281}{7589} a^{8} + \frac{2151}{7589} a^{6} - \frac{1136}{7589} a^{4} - \frac{3462}{7589} a^{3} - \frac{2331}{7589} a^{2} + \frac{548}{7589} a$, $\frac{1}{37945} a^{15} - \frac{1}{37945} a^{12} - \frac{7633}{37945} a^{10} - \frac{17374}{37945} a^{9} - \frac{704}{37945} a^{8} - \frac{18434}{37945} a^{7} + \frac{2661}{37945} a^{6} + \frac{6549}{37945} a^{5} - \frac{2364}{37945} a^{4} - \frac{11814}{37945} a^{3} + \frac{4462}{37945} a^{2} - \frac{14749}{37945} a - \frac{166}{37945}$, $\frac{1}{7334743797805} a^{16} - \frac{86252846}{7334743797805} a^{15} - \frac{40248441}{1466948759561} a^{14} - \frac{333117766}{7334743797805} a^{13} + \frac{13529471}{7334743797805} a^{12} - \frac{119313453}{7334743797805} a^{11} + \frac{625290885024}{7334743797805} a^{10} + \frac{96459126062}{1466948759561} a^{9} - \frac{48861926904}{1466948759561} a^{8} - \frac{62301011089}{1466948759561} a^{7} - \frac{923572893852}{7334743797805} a^{6} + \frac{836048560412}{7334743797805} a^{5} - \frac{718036675241}{1466948759561} a^{4} + \frac{1270840337721}{7334743797805} a^{3} + \frac{3264694161969}{7334743797805} a^{2} + \frac{1854006711183}{7334743797805} a - \frac{1237101752279}{7334743797805}$, $\frac{1}{7334743797805} a^{17} - \frac{40018886}{7334743797805} a^{15} - \frac{9569256}{7334743797805} a^{14} + \frac{17016335}{1466948759561} a^{13} + \frac{323920798}{7334743797805} a^{12} + \frac{10859706}{7334743797805} a^{11} - \frac{3659512640361}{7334743797805} a^{10} + \frac{723287414302}{1466948759561} a^{9} - \frac{253340026025}{1466948759561} a^{8} - \frac{2271765069772}{7334743797805} a^{7} - \frac{204978844357}{1466948759561} a^{6} - \frac{2639107223008}{7334743797805} a^{5} + \frac{3354846819626}{7334743797805} a^{4} + \frac{507871275457}{1466948759561} a^{3} - \frac{1928270794798}{7334743797805} a^{2} + \frac{1856478223904}{7334743797805} a - \frac{893931384279}{7334743797805}$, $\frac{1}{7334743797805} a^{18} - \frac{18413443}{7334743797805} a^{15} - \frac{1602051}{1466948759561} a^{14} + \frac{139199542}{7334743797805} a^{13} - \frac{200889572}{7334743797805} a^{12} - \frac{228539689}{7334743797805} a^{11} + \frac{745963572427}{7334743797805} a^{10} + \frac{767811640544}{7334743797805} a^{9} - \frac{311930398078}{7334743797805} a^{8} + \frac{1388903608934}{7334743797805} a^{7} - \frac{3417960702806}{7334743797805} a^{6} + \frac{1654349954269}{7334743797805} a^{5} - \frac{2841515634061}{7334743797805} a^{4} + \frac{2061475870202}{7334743797805} a^{3} - \frac{1033931907334}{7334743797805} a^{2} + \frac{3068064975383}{7334743797805} a + \frac{586423390787}{7334743797805}$, $\frac{1}{7334743797805} a^{19} - \frac{51351816}{7334743797805} a^{15} + \frac{319522157}{7334743797805} a^{14} + \frac{59862495}{1466948759561} a^{13} + \frac{100146462}{7334743797805} a^{12} + \frac{141601713}{7334743797805} a^{11} + \frac{491915996723}{1466948759561} a^{10} - \frac{2030572760281}{7334743797805} a^{9} - \frac{2968942707369}{7334743797805} a^{8} + \frac{2776695394421}{7334743797805} a^{7} + \frac{126189555412}{1466948759561} a^{6} + \frac{1594845416618}{7334743797805} a^{5} + \frac{3232889547459}{7334743797805} a^{4} + \frac{3421175720396}{7334743797805} a^{3} - \frac{862953520051}{7334743797805} a^{2} + \frac{1499563938258}{7334743797805} a - \frac{76312814084}{7334743797805}$
Class group and class number
$C_{29110}$, which has order $29110$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 125582.779517 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-187}) \), \(\Q(\sqrt{33}) \), \(\Q(\sqrt{-51}) \), \(\Q(\sqrt{33}, \sqrt{-51})\), \(\Q(\zeta_{11})^+\), 10.0.3347948534700187.1, \(\Q(\zeta_{33})^+\), 10.0.73959226721104131.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $17$ | 17.10.5.2 | $x^{10} - 83521 x^{2} + 8519142$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 17.10.5.2 | $x^{10} - 83521 x^{2} + 8519142$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |